Search (19 results, page 1 of 1)

  • × theme_ss:"Automatisches Abstracting"
  1. Ou, S.; Khoo, C.S.G.; Goh, D.H.: Multi-document summarization of news articles using an event-based framework (2006) 0.08
    0.07587066 = product of:
      0.101160884 = sum of:
        0.029088326 = weight(_text_:web in 657) [ClassicSimilarity], result of:
          0.029088326 = score(doc=657,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.18028519 = fieldWeight in 657, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=657)
        0.032993436 = weight(_text_:search in 657) [ClassicSimilarity], result of:
          0.032993436 = score(doc=657,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 657, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=657)
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 657) [ClassicSimilarity], result of:
              0.07815824 = score(doc=657,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 657, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=657)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Purpose - The purpose of this research is to develop a method for automatic construction of multi-document summaries of sets of news articles that might be retrieved by a web search engine in response to a user query. Design/methodology/approach - Based on the cross-document discourse analysis, an event-based framework is proposed for integrating and organizing information extracted from different news articles. It has a hierarchical structure in which the summarized information is presented at the top level and more detailed information given at the lower levels. A tree-view interface was implemented for displaying a multi-document summary based on the framework. A preliminary user evaluation was performed by comparing the framework-based summaries against the sentence-based summaries. Findings - In a small evaluation, all the human subjects preferred the framework-based summaries to the sentence-based summaries. It indicates that the event-based framework is an effective way to summarize a set of news articles reporting an event or a series of relevant events. Research limitations/implications - Limited to event-based news articles only, not applicable to news critiques and other kinds of news articles. A summarization system based on the event-based framework is being implemented. Practical implications - Multi-document summarization of news articles can adopt the proposed event-based framework. Originality/value - An event-based framework for summarizing sets of news articles was developed and evaluated using a tree-view interface for displaying such summaries.
  2. Ou, S.; Khoo, S.G.; Goh, D.H.: Automatic multidocument summarization of research abstracts : design and user evaluation (2007) 0.08
    0.07587066 = product of:
      0.101160884 = sum of:
        0.029088326 = weight(_text_:web in 522) [ClassicSimilarity], result of:
          0.029088326 = score(doc=522,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.18028519 = fieldWeight in 522, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=522)
        0.032993436 = weight(_text_:search in 522) [ClassicSimilarity], result of:
          0.032993436 = score(doc=522,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 522, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=522)
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 522) [ClassicSimilarity], result of:
              0.07815824 = score(doc=522,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 522, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=522)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    The purpose of this study was to develop a method for automatic construction of multidocument summaries of sets of research abstracts that may be retrieved by a digital library or search engine in response to a user query. Sociology dissertation abstracts were selected as the sample domain in this study. A variable-based framework was proposed for integrating and organizing research concepts and relationships as well as research methods and contextual relations extracted from different dissertation abstracts. Based on the framework, a new summarization method was developed, which parses the discourse structure of abstracts, extracts research concepts and relationships, integrates the information across different abstracts, and organizes and presents them in a Web-based interface. The focus of this article is on the user evaluation that was performed to assess the overall quality and usefulness of the summaries. Two types of variable-based summaries generated using the summarization method-with or without the use of a taxonomy-were compared against a sentence-based summary that lists only the research-objective sentences extracted from each abstract and another sentence-based summary generated using the MEAD system that extracts important sentences. The evaluation results indicate that the majority of sociological researchers (70%) and general users (64%) preferred the variable-based summaries generated with the use of the taxonomy.
  3. Shen, D.; Yang, Q.; Chen, Z.: Noise reduction through summarization for Web-page classification (2007) 0.03
    0.026179492 = product of:
      0.10471797 = sum of:
        0.10471797 = weight(_text_:web in 953) [ClassicSimilarity], result of:
          0.10471797 = score(doc=953,freq=18.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.64902663 = fieldWeight in 953, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=953)
      0.25 = coord(1/4)
    
    Abstract
    Due to a large variety of noisy information embedded in Web pages, Web-page classification is much more difficult than pure-text classification. In this paper, we propose to improve the Web-page classification performance by removing the noise through summarization techniques. We first give empirical evidence that ideal Web-page summaries generated by human editors can indeed improve the performance of Web-page classification algorithms. We then put forward a new Web-page summarization algorithm based on Web-page layout and evaluate it along with several other state-of-the-art text summarization algorithms on the LookSmart Web directory. Experimental results show that the classification algorithms (NB or SVM) augmented by any summarization approach can achieve an improvement by more than 5.0% as compared to pure-text-based classification algorithms. We further introduce an ensemble method to combine the different summarization algorithms. The ensemble summarization method achieves more than 12.0% improvement over pure-text based methods.
  4. Wu, Y.-f.B.; Li, Q.; Bot, R.S.; Chen, X.: Finding nuggets in documents : a machine learning approach (2006) 0.02
    0.024869673 = product of:
      0.049739346 = sum of:
        0.032993436 = weight(_text_:search in 5290) [ClassicSimilarity], result of:
          0.032993436 = score(doc=5290,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 5290, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5290)
        0.01674591 = product of:
          0.03349182 = sum of:
            0.03349182 = weight(_text_:22 in 5290) [ClassicSimilarity], result of:
              0.03349182 = score(doc=5290,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.19345059 = fieldWeight in 5290, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5290)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Document keyphrases provide a concise summary of a document's content, offering semantic metadata summarizing a document. They can be used in many applications related to knowledge management and text mining, such as automatic text summarization, development of search engines, document clustering, document classification, thesaurus construction, and browsing interfaces. Because only a small portion of documents have keyphrases assigned by authors, and it is time-consuming and costly to manually assign keyphrases to documents, it is necessary to develop an algorithm to automatically generate keyphrases for documents. This paper describes a Keyphrase Identification Program (KIP), which extracts document keyphrases by using prior positive samples of human identified phrases to assign weights to the candidate keyphrases. The logic of our algorithm is: The more keywords a candidate keyphrase contains and the more significant these keywords are, the more likely this candidate phrase is a keyphrase. KIP's learning function can enrich the glossary database by automatically adding new identified keyphrases to the database. KIP's personalization feature will let the user build a glossary database specifically suitable for the area of his/her interest. The evaluation results show that KIP's performance is better than the systems we compared to and that the learning function is effective.
    Date
    22. 7.2006 17:25:48
  5. Yulianti, E.; Huspi, S.; Sanderson, M.: Tweet-biased summarization (2016) 0.01
    0.014544163 = product of:
      0.05817665 = sum of:
        0.05817665 = weight(_text_:web in 2926) [ClassicSimilarity], result of:
          0.05817665 = score(doc=2926,freq=8.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.36057037 = fieldWeight in 2926, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2926)
      0.25 = coord(1/4)
    
    Abstract
    We examined whether the microblog comments given by people after reading a web document could be exploited to improve the accuracy of a web document summarization system. We examined the effect of social information (i.e., tweets) on the accuracy of the generated summaries by comparing the user preference for TBS (tweet-biased summary) with GS (generic summary). The result of crowdsourcing-based evaluation shows that the user preference for TBS was significantly higher than GS. We also took random samples of the documents to see the performance of summaries in a traditional evaluation using ROUGE, which, in general, TBS was also shown to be better than GS. We further analyzed the influence of the number of tweets pointed to a web document on summarization accuracy, finding a positive moderate correlation between the number of tweets pointed to a web document and the performance of generated TBS as measured by user preference. The results show that incorporating social information into the summary generation process can improve the accuracy of summary. The reason for people choosing one summary over another in a crowdsourcing-based evaluation is also presented in this article.
  6. Soricut, R.; Marcu, D.: Abstractive headline generation using WIDL-expressions (2007) 0.01
    0.013677692 = product of:
      0.05471077 = sum of:
        0.05471077 = product of:
          0.10942154 = sum of:
            0.10942154 = weight(_text_:engine in 943) [ClassicSimilarity], result of:
              0.10942154 = score(doc=943,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.41372913 = fieldWeight in 943, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=943)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    We present a new paradigm for the automatic creation of document headlines that is based on direct transformation of relevant textual information into well-formed textual output. Starting from an input document, we automatically create compact representations of weighted finite sets of strings, called WIDL-expressions, which encode the most important topics in the document. A generic natural language generation engine performs the headline generation task, driven by both statistical knowledge encapsulated in WIDL-expressions (representing topic biases induced by the input document) and statistical knowledge encapsulated in language models (representing biases induced by the target language). Our evaluation shows similar performance in quality with a state-of-the-art, extractive approach to headline generation, and significant improvements in quality over previously proposed solutions to abstractive headline generation.
  7. Gomez, J.; Allen, K.; Matney, M.; Awopetu, T.; Shafer, S.: Experimenting with a machine generated annotations pipeline (2020) 0.01
    0.0131973745 = product of:
      0.052789498 = sum of:
        0.052789498 = weight(_text_:search in 657) [ClassicSimilarity], result of:
          0.052789498 = score(doc=657,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.30720934 = fieldWeight in 657, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0625 = fieldNorm(doc=657)
      0.25 = coord(1/4)
    
    Abstract
    The UCLA Library reorganized its software developers into focused subteams with one, the Labs Team, dedicated to conducting experiments. In this article we describe our first attempt at conducting a software development experiment, in which we attempted to improve our digital library's search results with metadata from cloud-based image tagging services. We explore the findings and discuss the lessons learned from our first attempt at running an experiment.
  8. Moens, M.-F.; Uyttendaele, C.: Automatic text structuring and categorization as a first step in summarizing legal cases (1997) 0.01
    0.00989803 = product of:
      0.03959212 = sum of:
        0.03959212 = weight(_text_:search in 2256) [ClassicSimilarity], result of:
          0.03959212 = score(doc=2256,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.230407 = fieldWeight in 2256, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=2256)
      0.25 = coord(1/4)
    
    Abstract
    The SALOMON system automatically summarizes Belgian criminal cases in order to improve access to the large number of existing and future court decisions. SALOMON extracts relevant text units from the case text to form a case summary. Such a case profile facilitates the rapid determination of the relevance of the case or may be employed in text search. In a first important abstracting step SALOMON performs an initial categorization of legal criminal cases and structures the case text into separate legally relevant and irrelevant components. A text grammar represented as a semantic network is used to automatically determine the category of the case and its components. Extracts from the case general data and identifies text portions relevant for further abstracting. Prior knowledge of the text structure and its indicative cues may support automatic abstracting. A text grammar is a promising form for representing the knowledge involved
  9. Moens, M.-F.; Uyttendaele, C.; Dumotier, J.: Abstracting of legal cases : the potential of clustering based on the selection of representative objects (1999) 0.01
    0.00989803 = product of:
      0.03959212 = sum of:
        0.03959212 = weight(_text_:search in 2944) [ClassicSimilarity], result of:
          0.03959212 = score(doc=2944,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.230407 = fieldWeight in 2944, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=2944)
      0.25 = coord(1/4)
    
    Abstract
    The SALOMON project automatically summarizes Belgian criminal cases in order to improve access to the large number of existing and future court decisions. SALOMON extracts text units from the case text to form a case summary. Such a case summary facilitates the rapid determination of the relevance of the case or may be employed in text search. an important part of the research concerns the development of techniques for automatic recognition of representative text paragraphs (or sentences) in texts of unrestricted domains. these techniques are employed to eliminate redundant material in the case texts, and to identify informative text paragraphs which are relevant to include in the case summary. An evaluation of a test set of 700 criminal cases demonstrates that the algorithms have an application potential for automatic indexing, abstracting, and text linkage
  10. Hobson, S.P.; Dorr, B.J.; Monz, C.; Schwartz, R.: Task-based evaluation of text summarization using Relevance Prediction (2007) 0.01
    0.00989803 = product of:
      0.03959212 = sum of:
        0.03959212 = weight(_text_:search in 938) [ClassicSimilarity], result of:
          0.03959212 = score(doc=938,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.230407 = fieldWeight in 938, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=938)
      0.25 = coord(1/4)
    
    Abstract
    This article introduces a new task-based evaluation measure called Relevance Prediction that is a more intuitive measure of an individual's performance on a real-world task than interannotator agreement. Relevance Prediction parallels what a user does in the real world task of browsing a set of documents using standard search tools, i.e., the user judges relevance based on a short summary and then that same user - not an independent user - decides whether to open (and judge) the corresponding document. This measure is shown to be a more reliable measure of task performance than LDC Agreement, a current gold-standard based measure used in the summarization evaluation community. Our goal is to provide a stable framework within which developers of new automatic measures may make stronger statistical statements about the effectiveness of their measures in predicting summary usefulness. We demonstrate - as a proof-of-concept methodology for automatic metric developers - that a current automatic evaluation measure has a better correlation with Relevance Prediction than with LDC Agreement and that the significance level for detected differences is higher for the former than for the latter.
  11. Liang, S.-F.; Devlin, S.; Tait, J.: Investigating sentence weighting components for automatic summarisation (2007) 0.01
    0.008726497 = product of:
      0.03490599 = sum of:
        0.03490599 = weight(_text_:web in 899) [ClassicSimilarity], result of:
          0.03490599 = score(doc=899,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.21634221 = fieldWeight in 899, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=899)
      0.25 = coord(1/4)
    
    Abstract
    The work described here initially formed part of a triangulation exercise to establish the effectiveness of the Query Term Order algorithm. It subsequently proved to be a reliable indicator for summarising English web documents. We utilised the human summaries from the Document Understanding Conference data, and generated queries automatically for testing the QTO algorithm. Six sentence weighting schemes that made use of Query Term Frequency and QTO were constructed to produce system summaries, and this paper explains the process of combining and balancing the weighting components. The summaries produced were evaluated by the ROUGE-1 metric, and the results showed that using QTO in a weighting combination resulted in the best performance. We also found that using a combination of more weighting components always produced improved performance compared to any single weighting component.
  12. Xu, D.; Cheng, G.; Qu, Y.: Preferences in Wikipedia abstracts : empirical findings and implications for automatic entity summarization (2014) 0.01
    0.008726497 = product of:
      0.03490599 = sum of:
        0.03490599 = weight(_text_:web in 2700) [ClassicSimilarity], result of:
          0.03490599 = score(doc=2700,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.21634221 = fieldWeight in 2700, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2700)
      0.25 = coord(1/4)
    
    Abstract
    The volume of entity-centric structured data grows rapidly on the Web. The description of an entity, composed of property-value pairs (a.k.a. features), has become very large in many applications. To avoid information overload, efforts have been made to automatically select a limited number of features to be shown to the user based on certain criteria, which is called automatic entity summarization. However, to the best of our knowledge, there is a lack of extensive studies on how humans rank and select features in practice, which can provide empirical support and inspire future research. In this article, we present a large-scale statistical analysis of the descriptions of entities provided by DBpedia and the abstracts of their corresponding Wikipedia articles, to empirically study, along several different dimensions, which kinds of features are preferable when humans summarize. Implications for automatic entity summarization are drawn from the findings.
  13. Goh, A.; Hui, S.C.: TES: a text extraction system (1996) 0.01
    0.0066983635 = product of:
      0.026793454 = sum of:
        0.026793454 = product of:
          0.053586908 = sum of:
            0.053586908 = weight(_text_:22 in 6599) [ClassicSimilarity], result of:
              0.053586908 = score(doc=6599,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.30952093 = fieldWeight in 6599, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6599)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    26. 2.1997 10:22:43
  14. Robin, J.; McKeown, K.: Empirically designing and evaluating a new revision-based model for summary generation (1996) 0.01
    0.0066983635 = product of:
      0.026793454 = sum of:
        0.026793454 = product of:
          0.053586908 = sum of:
            0.053586908 = weight(_text_:22 in 6751) [ClassicSimilarity], result of:
              0.053586908 = score(doc=6751,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.30952093 = fieldWeight in 6751, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6751)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    6. 3.1997 16:22:15
  15. Jones, P.A.; Bradbeer, P.V.G.: Discovery of optimal weights in a concept selection system (1996) 0.01
    0.0066983635 = product of:
      0.026793454 = sum of:
        0.026793454 = product of:
          0.053586908 = sum of:
            0.053586908 = weight(_text_:22 in 6974) [ClassicSimilarity], result of:
              0.053586908 = score(doc=6974,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.30952093 = fieldWeight in 6974, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6974)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon
  16. Vanderwende, L.; Suzuki, H.; Brockett, J.M.; Nenkova, A.: Beyond SumBasic : task-focused summarization with sentence simplification and lexical expansion (2007) 0.01
    0.0050237724 = product of:
      0.02009509 = sum of:
        0.02009509 = product of:
          0.04019018 = sum of:
            0.04019018 = weight(_text_:22 in 948) [ClassicSimilarity], result of:
              0.04019018 = score(doc=948,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23214069 = fieldWeight in 948, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=948)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    In recent years, there has been increased interest in topic-focused multi-document summarization. In this task, automatic summaries are produced in response to a specific information request, or topic, stated by the user. The system we have designed to accomplish this task comprises four main components: a generic extractive summarization system, a topic-focusing component, sentence simplification, and lexical expansion of topic words. This paper details each of these components, together with experiments designed to quantify their individual contributions. We include an analysis of our results on two large datasets commonly used to evaluate task-focused summarization, the DUC2005 and DUC2006 datasets, using automatic metrics. Additionally, we include an analysis of our results on the DUC2006 task according to human evaluation metrics. In the human evaluation of system summaries compared to human summaries, i.e., the Pyramid method, our system ranked first out of 22 systems in terms of overall mean Pyramid score; and in the human evaluation of summary responsiveness to the topic, our system ranked third out of 35 systems.
  17. Kim, H.H.; Kim, Y.H.: Generic speech summarization of transcribed lecture videos : using tags and their semantic relations (2016) 0.00
    0.0041864775 = product of:
      0.01674591 = sum of:
        0.01674591 = product of:
          0.03349182 = sum of:
            0.03349182 = weight(_text_:22 in 2640) [ClassicSimilarity], result of:
              0.03349182 = score(doc=2640,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.19345059 = fieldWeight in 2640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2640)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2016 12:29:41
  18. Oh, H.; Nam, S.; Zhu, Y.: Structured abstract summarization of scientific articles : summarization using full-text section information (2023) 0.00
    0.0041864775 = product of:
      0.01674591 = sum of:
        0.01674591 = product of:
          0.03349182 = sum of:
            0.03349182 = weight(_text_:22 in 889) [ClassicSimilarity], result of:
              0.03349182 = score(doc=889,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.19345059 = fieldWeight in 889, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=889)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2023 18:57:12
  19. Jiang, Y.; Meng, R.; Huang, Y.; Lu, W.; Liu, J.: Generating keyphrases for readers : a controllable keyphrase generation framework (2023) 0.00
    0.0041864775 = product of:
      0.01674591 = sum of:
        0.01674591 = product of:
          0.03349182 = sum of:
            0.03349182 = weight(_text_:22 in 1012) [ClassicSimilarity], result of:
              0.03349182 = score(doc=1012,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.19345059 = fieldWeight in 1012, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1012)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 6.2023 14:55:20