Search (78 results, page 1 of 4)

  • × theme_ss:"Automatisches Klassifizieren"
  1. Jenkins, C.: Automatic classification of Web resources using Java and Dewey Decimal Classification (1998) 0.20
    0.20477724 = product of:
      0.27303633 = sum of:
        0.07053544 = weight(_text_:web in 1673) [ClassicSimilarity], result of:
          0.07053544 = score(doc=1673,freq=6.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.43716836 = fieldWeight in 1673, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1673)
        0.046190813 = weight(_text_:search in 1673) [ClassicSimilarity], result of:
          0.046190813 = score(doc=1673,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.2688082 = fieldWeight in 1673, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1673)
        0.15631008 = sum of:
          0.10942154 = weight(_text_:engine in 1673) [ClassicSimilarity], result of:
            0.10942154 = score(doc=1673,freq=2.0), product of:
              0.26447627 = queryWeight, product of:
                5.349498 = idf(docFreq=570, maxDocs=44218)
                0.049439456 = queryNorm
              0.41372913 = fieldWeight in 1673, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.349498 = idf(docFreq=570, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1673)
          0.046888545 = weight(_text_:22 in 1673) [ClassicSimilarity], result of:
            0.046888545 = score(doc=1673,freq=2.0), product of:
              0.17312855 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049439456 = queryNorm
              0.2708308 = fieldWeight in 1673, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1673)
      0.75 = coord(3/4)
    
    Abstract
    The Wolverhampton Web Library (WWLib) is a WWW search engine that provides access to UK based information. The experimental version developed in 1995, was a success but highlighted the need for a much higher degree of automation. An interesting feature of the experimental WWLib was that it organised information according to DDC. Discusses the advantages of classification and describes the automatic classifier that is being developed in Java as part of the new, fully automated WWLib
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia; vgl. auch: http://www7.scu.edu.au/programme/posters/1846/com1846.htm.
  2. Khoo, C.S.G.; Ng, K.; Ou, S.: ¬An exploratory study of human clustering of Web pages (2003) 0.18
    0.18344072 = product of:
      0.24458762 = sum of:
        0.08061194 = weight(_text_:web in 2741) [ClassicSimilarity], result of:
          0.08061194 = score(doc=2741,freq=24.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.49962097 = fieldWeight in 2741, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2741)
        0.07465562 = weight(_text_:search in 2741) [ClassicSimilarity], result of:
          0.07465562 = score(doc=2741,freq=16.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.43445963 = fieldWeight in 2741, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=2741)
        0.08932005 = sum of:
          0.06252659 = weight(_text_:engine in 2741) [ClassicSimilarity], result of:
            0.06252659 = score(doc=2741,freq=2.0), product of:
              0.26447627 = queryWeight, product of:
                5.349498 = idf(docFreq=570, maxDocs=44218)
                0.049439456 = queryNorm
              0.23641664 = fieldWeight in 2741, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.349498 = idf(docFreq=570, maxDocs=44218)
                0.03125 = fieldNorm(doc=2741)
          0.026793454 = weight(_text_:22 in 2741) [ClassicSimilarity], result of:
            0.026793454 = score(doc=2741,freq=2.0), product of:
              0.17312855 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049439456 = queryNorm
              0.15476047 = fieldWeight in 2741, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2741)
      0.75 = coord(3/4)
    
    Abstract
    This study seeks to find out how human beings cluster Web pages naturally. Twenty Web pages retrieved by the Northem Light search engine for each of 10 queries were sorted by 3 subjects into categories that were natural or meaningful to them. lt was found that different subjects clustered the same set of Web pages quite differently and created different categories. The average inter-subject similarity of the clusters created was a low 0.27. Subjects created an average of 5.4 clusters for each sorting. The categories constructed can be divided into 10 types. About 1/3 of the categories created were topical. Another 20% of the categories relate to the degree of relevance or usefulness. The rest of the categories were subject-independent categories such as format, purpose, authoritativeness and direction to other sources. The authors plan to develop automatic methods for categorizing Web pages using the common categories created by the subjects. lt is hoped that the techniques developed can be used by Web search engines to automatically organize Web pages retrieved into categories that are natural to users. 1. Introduction The World Wide Web is an increasingly important source of information for people globally because of its ease of access, the ease of publishing, its ability to transcend geographic and national boundaries, its flexibility and heterogeneity and its dynamic nature. However, Web users also find it increasingly difficult to locate relevant and useful information in this vast information storehouse. Web search engines, despite their scope and power, appear to be quite ineffective. They retrieve too many pages, and though they attempt to rank retrieved pages in order of probable relevance, often the relevant documents do not appear in the top-ranked 10 or 20 documents displayed. Several studies have found that users do not know how to use the advanced features of Web search engines, and do not know how to formulate and re-formulate queries. Users also typically exert minimal effort in performing, evaluating and refining their searches, and are unwilling to scan more than 10 or 20 items retrieved (Jansen, Spink, Bateman & Saracevic, 1998). This suggests that the conventional ranked-list display of search results does not satisfy user requirements, and that better ways of presenting and summarizing search results have to be developed. One promising approach is to group retrieved pages into clusters or categories to allow users to navigate immediately to the "promising" clusters where the most useful Web pages are likely to be located. This approach has been adopted by a number of search engines (notably Northem Light) and search agents.
    Date
    12. 9.2004 9:56:22
  3. Yilmaz, T.; Ozcan, R.; Altingovde, I.S.; Ulusoy, Ö.: Improving educational web search for question-like queries through subject classification (2019) 0.16
    0.15854177 = product of:
      0.21138902 = sum of:
        0.050382458 = weight(_text_:web in 5041) [ClassicSimilarity], result of:
          0.050382458 = score(doc=5041,freq=6.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.3122631 = fieldWeight in 5041, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5041)
        0.093319535 = weight(_text_:search in 5041) [ClassicSimilarity], result of:
          0.093319535 = score(doc=5041,freq=16.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.54307455 = fieldWeight in 5041, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5041)
        0.06768702 = product of:
          0.13537404 = sum of:
            0.13537404 = weight(_text_:engine in 5041) [ClassicSimilarity], result of:
              0.13537404 = score(doc=5041,freq=6.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.51185703 = fieldWeight in 5041, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5041)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Students use general web search engines as their primary source of research while trying to find answers to school-related questions. Although search engines are highly relevant for the general population, they may return results that are out of educational context. Another rising trend; social community question answering websites are the second choice for students who try to get answers from other peers online. We attempt discovering possible improvements in educational search by leveraging both of these information sources. For this purpose, we first implement a classifier for educational questions. This classifier is built by an ensemble method that employs several regular learning algorithms and retrieval based approaches that utilize external resources. We also build a query expander to facilitate classification. We further improve the classification using search engine results and obtain 83.5% accuracy. Although our work is entirely based on the Turkish language, the features could easily be mapped to other languages as well. In order to find out whether search engine ranking can be improved in the education domain using the classification model, we collect and label a set of query results retrieved from a general web search engine. We propose five ad-hoc methods to improve search ranking based on the idea that the query-document category relation is an indicator of relevance. We evaluate these methods for overall performance, varying query length and based on factoid and non-factoid queries. We show that some of the methods significantly improve the rankings in the education domain.
  4. Search Engines and Beyond : Developing efficient knowledge management systems, April 19-20 1999, Boston, Mass (1999) 0.12
    0.121988446 = product of:
      0.16265126 = sum of:
        0.023270661 = weight(_text_:web in 2596) [ClassicSimilarity], result of:
          0.023270661 = score(doc=2596,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.14422815 = fieldWeight in 2596, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2596)
        0.09516762 = weight(_text_:search in 2596) [ClassicSimilarity], result of:
          0.09516762 = score(doc=2596,freq=26.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.55382955 = fieldWeight in 2596, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=2596)
        0.044212975 = product of:
          0.08842595 = sum of:
            0.08842595 = weight(_text_:engine in 2596) [ClassicSimilarity], result of:
              0.08842595 = score(doc=2596,freq=4.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.3343436 = fieldWeight in 2596, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2596)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    This series of meetings originated in Albuquerque, New Mexico in 1995. This inaugural meeting (part of an ASIDIC series) was transplanted to Bath in England (1996 and 1997) and then to Boston, Massachusetts (1998 and 1999). The Search Engines Meetings bring together commercial search engine developers, academics and corporate professionals to learn from each other. Infonortics, sponsor of meetings post-1995 with Ev Brenner, plans to continue the same success in Boston in 2000.
    Content
    Ramana Rao (Inxight, Palo Alto, CA) 7 ± 2 Insights on achieving Effective Information Access Session One: Updates and a twelve month perspective Danny Sullivan (Search Engine Watch, US / England) Portalization and other search trends Carol Tenopir (University of Tennessee) Search realities faced by end users and professional searchers Session Two: Today's search engines and beyond Daniel Hoogterp (Retrieval Technologies, McLean, VA) Effective presentation and utilization of search techniques Rick Kenny (Fulcrum Technologies, Ontario, Canada) Beyond document clustering: The knowledge impact statement Gary Stock (Ingenius, Kalamazoo, MI) Automated change monitoring Gary Culliss (Direct Hit, Wellesley Hills, MA) User popularity ranked search engines Byron Dom (IBM, CA) Automatically finding the best pages on the World Wide Web (CLEVER) Peter Tomassi (LookSmart, San Francisco, CA) Adding human intellect to search technology Session Three: Panel discussion: Human v automated categorization and editing Ev Brenner (New York, NY)- Chairman James Callan (University of Massachusetts, MA) Marc Krellenstein (Northern Light Technology, Cambridge, MA) Dan Miller (Ask Jeeves, Berkeley, CA) Session Four: Updates and a twelve month perspective Steve Arnold (AIT, Harrods Creek, KY) Review: The leading edge in search and retrieval software Ellen Voorhees (NIST, Gaithersburg, MD) TREC update Session Five: Search engines now and beyond Intelligent Agents John Snyder (Muscat, Cambridge, England) Practical issues behind intelligent agents Text summarization Therese Firmin, (Dept of Defense, Ft George G. Meade, MD) The TIPSTER/SUMMAC evaluation of automatic text summarization systems Cross language searching Elizabeth Liddy (TextWise, Syracuse, NY) A conceptual interlingua approach to cross-language retrieval. Video search and retrieval Armon Amir (IBM, Almaden, CA) CueVideo: Modular system for automatic indexing and browsing of video/audio Speech recognition Michael Witbrock (Lycos, Waltham, MA) Retrieval of spoken documents Visualization James A. Wise (Integral Visuals, Richland, WA) Information visualization in the new millennium: Emerging science or passing fashion? Text mining David Evans (Claritech, Pittsburgh, PA) Text mining - towards decision support
  5. Lim, C.S.; Lee, K.J.; Kim, G.C.: Multiple sets of features for automatic genre classification of web documents (2005) 0.11
    0.11177478 = product of:
      0.14903304 = sum of:
        0.07696048 = weight(_text_:web in 1048) [ClassicSimilarity], result of:
          0.07696048 = score(doc=1048,freq=14.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.47698978 = fieldWeight in 1048, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1048)
        0.032993436 = weight(_text_:search in 1048) [ClassicSimilarity], result of:
          0.032993436 = score(doc=1048,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 1048, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1048)
        0.03907912 = product of:
          0.07815824 = sum of:
            0.07815824 = weight(_text_:engine in 1048) [ClassicSimilarity], result of:
              0.07815824 = score(doc=1048,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.29552078 = fieldWeight in 1048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1048)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    With the increase of information on the Web, it is difficult to find desired information quickly out of the documents retrieved by a search engine. One way to solve this problem is to classify web documents according to various criteria. Most document classification has been focused on a subject or a topic of a document. A genre or a style is another view of a document different from a subject or a topic. The genre is also a criterion to classify documents. In this paper, we suggest multiple sets of features to classify genres of web documents. The basic set of features, which have been proposed in the previous studies, is acquired from the textual properties of documents, such as the number of sentences, the number of a certain word, etc. However, web documents are different from textual documents in that they contain URL and HTML tags within the pages. We introduce new sets of features specific to web documents, which are extracted from URL and HTML tags. The present work is an attempt to evaluate the performance of the proposed sets of features, and to discuss their characteristics. Finally, we conclude which is an appropriate set of features in automatic genre classification of web documents.
  6. Miyamoto, S.: Information clustering based an fuzzy multisets (2003) 0.11
    0.106218934 = product of:
      0.14162524 = sum of:
        0.04072366 = weight(_text_:web in 1071) [ClassicSimilarity], result of:
          0.04072366 = score(doc=1071,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25239927 = fieldWeight in 1071, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1071)
        0.046190813 = weight(_text_:search in 1071) [ClassicSimilarity], result of:
          0.046190813 = score(doc=1071,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.2688082 = fieldWeight in 1071, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1071)
        0.05471077 = product of:
          0.10942154 = sum of:
            0.10942154 = weight(_text_:engine in 1071) [ClassicSimilarity], result of:
              0.10942154 = score(doc=1071,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.41372913 = fieldWeight in 1071, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1071)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    A fuzzy multiset model for information clustering is proposed with application to information retrieval on the World Wide Web. Noting that a search engine retrieves multiple occurrences of the same subjects with possibly different degrees of relevance, we observe that fuzzy multisets provide an appropriate model of information retrieval on the WWW. Information clustering which means both term clustering and document clustering is considered. Three methods of the hard c-means, fuzzy c-means, and an agglomerative method using cluster centers are proposed. Two distances between fuzzy multisets and algorithms for calculating cluster centers are defined. Theoretical properties concerning the clustering algorithms are studied. Illustrative examples are given to show how the algorithms work.
  7. Krellenstein, M.: Document classification at Northern Light (1999) 0.10
    0.10288666 = product of:
      0.20577332 = sum of:
        0.11198343 = weight(_text_:search in 4435) [ClassicSimilarity], result of:
          0.11198343 = score(doc=4435,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.6516894 = fieldWeight in 4435, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.09375 = fieldNorm(doc=4435)
        0.09378988 = product of:
          0.18757977 = sum of:
            0.18757977 = weight(_text_:engine in 4435) [ClassicSimilarity], result of:
              0.18757977 = score(doc=4435,freq=2.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.7092499 = fieldWeight in 4435, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4435)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Footnote
    Vortrag bei: Search engines and beyond: developing efficient knowledge management systems; 1999 Search engine Meeting, Boston, MA, April 19-20 1999
  8. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.10
    0.10014303 = product of:
      0.13352405 = sum of:
        0.078522965 = product of:
          0.23556888 = sum of:
            0.23556888 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
              0.23556888 = score(doc=562,freq=2.0), product of:
                0.41914827 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.049439456 = queryNorm
                0.56201804 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.33333334 = coord(1/3)
        0.03490599 = weight(_text_:web in 562) [ClassicSimilarity], result of:
          0.03490599 = score(doc=562,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.21634221 = fieldWeight in 562, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.02009509 = product of:
          0.04019018 = sum of:
            0.04019018 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
              0.04019018 = score(doc=562,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23214069 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
  9. Ozmutlu, S.; Cosar, G.C.: Analyzing the results of automatic new topic identification (2008) 0.09
    0.09116028 = product of:
      0.18232056 = sum of:
        0.08853068 = weight(_text_:search in 2604) [ClassicSimilarity], result of:
          0.08853068 = score(doc=2604,freq=10.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.51520574 = fieldWeight in 2604, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=2604)
        0.09378988 = product of:
          0.18757977 = sum of:
            0.18757977 = weight(_text_:engine in 2604) [ClassicSimilarity], result of:
              0.18757977 = score(doc=2604,freq=8.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.7092499 = fieldWeight in 2604, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2604)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - Identification of topic changes within a user search session is a key issue in content analysis of search engine user queries. Recently, various studies have focused on new topic identification/session identification of search engine transaction logs, and several problems regarding the estimation of topic shifts and continuations were observed in these studies. This study aims to analyze the reasons for the problems that were encountered as a result of applying automatic new topic identification. Design/methodology/approach - Measures, such as cleaning the data of common words and analyzing the errors of automatic new topic identification, are applied to eliminate the problems in estimating topic shifts and continuations. Findings - The findings show that the resulting errors of automatic new topic identification have a pattern, and further research is required to improve the performance of automatic new topic identification. Originality/value - Improving the performance of automatic new topic identification would be valuable to search engine designers, so that they can develop new clustering and query recommendation algorithms, as well as custom-tailored graphical user interfaces for search engine users.
  10. Lindholm, J.; Schönthal, T.; Jansson , K.: Experiences of harvesting Web resources in engineering using automatic classification (2003) 0.08
    0.08451894 = product of:
      0.16903788 = sum of:
        0.08061194 = weight(_text_:web in 4088) [ClassicSimilarity], result of:
          0.08061194 = score(doc=4088,freq=6.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.49962097 = fieldWeight in 4088, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=4088)
        0.08842595 = product of:
          0.1768519 = sum of:
            0.1768519 = weight(_text_:engine in 4088) [ClassicSimilarity], result of:
              0.1768519 = score(doc=4088,freq=4.0), product of:
                0.26447627 = queryWeight, product of:
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.049439456 = queryNorm
                0.6686872 = fieldWeight in 4088, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.349498 = idf(docFreq=570, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4088)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Authors describe the background and the work involved in setting up Engine-e, a Web index that uses automatic classification as a mean for the selection of resources in Engineering. Considerations in offering a robot-generated Web index as a successor to a manually indexed quality-controlled subject gateway are also discussed
    Footnote
    Auch unter: http://www.ariadne.ac.uk/issue37/lindholm/ und http://engine-e.lub.lu.se/
  11. Montesi, M.; Navarrete, T.: Classifying web genres in context : A case study documenting the web genres used by a software engineer (2008) 0.07
    0.07215504 = product of:
      0.14431009 = sum of:
        0.10471797 = weight(_text_:web in 2100) [ClassicSimilarity], result of:
          0.10471797 = score(doc=2100,freq=18.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.64902663 = fieldWeight in 2100, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2100)
        0.03959212 = weight(_text_:search in 2100) [ClassicSimilarity], result of:
          0.03959212 = score(doc=2100,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.230407 = fieldWeight in 2100, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=2100)
      0.5 = coord(2/4)
    
    Abstract
    This case study analyzes the Internet-based resources that a software engineer uses in his daily work. Methodologically, we studied the web browser history of the participant, classifying all the web pages he had seen over a period of 12 days into web genres. We interviewed him before and after the analysis of the web browser history. In the first interview, he spoke about his general information behavior; in the second, he commented on each web genre, explaining why and how he used them. As a result, three approaches allow us to describe the set of 23 web genres obtained: (a) the purposes they serve for the participant; (b) the role they play in the various work and search phases; (c) and the way they are used in combination with each other. Further observations concern the way the participant assesses quality of web-based resources, and his information behavior as a software engineer.
  12. Choi, B.; Peng, X.: Dynamic and hierarchical classification of Web pages (2004) 0.07
    0.06702195 = product of:
      0.1340439 = sum of:
        0.07805218 = weight(_text_:web in 2555) [ClassicSimilarity], result of:
          0.07805218 = score(doc=2555,freq=10.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.48375595 = fieldWeight in 2555, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2555)
        0.055991717 = weight(_text_:search in 2555) [ClassicSimilarity], result of:
          0.055991717 = score(doc=2555,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.3258447 = fieldWeight in 2555, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=2555)
      0.5 = coord(2/4)
    
    Abstract
    Automatic classification of Web pages is an effective way to organise the vast amount of information and to assist in retrieving relevant information from the Internet. Although many automatic classification systems have been proposed, most of them ignore the conflict between the fixed number of categories and the growing number of Web pages being added into the systems. They also require searching through all existing categories to make any classification. This article proposes a dynamic and hierarchical classification system that is capable of adding new categories as required, organising the Web pages into a tree structure, and classifying Web pages by searching through only one path of the tree. The proposed single-path search technique reduces the search complexity from (n) to (log(n)). Test results show that the system improves the accuracy of classification by 6 percent in comparison to related systems. The dynamic-category expansion technique also achieves satisfying results for adding new categories into the system as required.
  13. Egbert, J.; Biber, D.; Davies, M.: Developing a bottom-up, user-based method of web register classification (2015) 0.06
    0.05941207 = product of:
      0.11882414 = sum of:
        0.09872905 = weight(_text_:web in 2158) [ClassicSimilarity], result of:
          0.09872905 = score(doc=2158,freq=16.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.6119082 = fieldWeight in 2158, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2158)
        0.02009509 = product of:
          0.04019018 = sum of:
            0.04019018 = weight(_text_:22 in 2158) [ClassicSimilarity], result of:
              0.04019018 = score(doc=2158,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23214069 = fieldWeight in 2158, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2158)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper introduces a project to develop a reliable, cost-effective method for classifying Internet texts into register categories, and apply that approach to the analysis of a large corpus of web documents. To date, the project has proceeded in 2 key phases. First, we developed a bottom-up method for web register classification, asking end users of the web to utilize a decision-tree survey to code relevant situational characteristics of web documents, resulting in a bottom-up identification of register and subregister categories. We present details regarding the development and testing of this method through a series of 10 pilot studies. Then, in the second phase of our project we applied this procedure to a corpus of 53,000 web documents. An analysis of the results demonstrates the effectiveness of these methods for web register classification and provides a preliminary description of the types and distribution of registers on the web.
    Date
    4. 8.2015 19:22:04
  14. Koch, T.; Vizine-Goetz, D.: Automatic classification and content navigation support for Web services : DESIRE II cooperates with OCLC (1998) 0.05
    0.053023666 = product of:
      0.10604733 = sum of:
        0.04072366 = weight(_text_:web in 1568) [ClassicSimilarity], result of:
          0.04072366 = score(doc=1568,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25239927 = fieldWeight in 1568, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1568)
        0.06532367 = weight(_text_:search in 1568) [ClassicSimilarity], result of:
          0.06532367 = score(doc=1568,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.38015217 = fieldWeight in 1568, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1568)
      0.5 = coord(2/4)
    
    Abstract
    Emerging standards in knowledge representation and organization are preparing the way for distributed vocabulary support in Internet search services. NetLab researchers are exploring several innovative solutions for searching and browsing in the subject-based Internet gateway, Electronic Engineering Library, Sweden (EELS). The implementation of the EELS service is described, specifically, the generation of the robot-gathered database 'All' engineering and the automated application of the Ei thesaurus and classification scheme. NetLab and OCLC researchers are collaborating to investigate advanced solutions to automated classification in the DESIRE II context. A plan for furthering the development of distributed vocabulary support in Internet search services is offered.
  15. HaCohen-Kerner, Y. et al.: Classification using various machine learning methods and combinations of key-phrases and visual features (2016) 0.05
    0.049739346 = product of:
      0.09947869 = sum of:
        0.06598687 = weight(_text_:search in 2748) [ClassicSimilarity], result of:
          0.06598687 = score(doc=2748,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.3840117 = fieldWeight in 2748, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.078125 = fieldNorm(doc=2748)
        0.03349182 = product of:
          0.06698364 = sum of:
            0.06698364 = weight(_text_:22 in 2748) [ClassicSimilarity], result of:
              0.06698364 = score(doc=2748,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.38690117 = fieldWeight in 2748, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2748)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    1. 2.2016 18:25:22
    Source
    Semantic keyword-based search on structured data sources: First COST Action IC1302 International KEYSTONE Conference, IKC 2015, Coimbra, Portugal, September 8-9, 2015. Revised Selected Papers. Eds.: J. Cardoso et al
  16. Fang, H.: Classifying research articles in multidisciplinary sciences journals into subject categories (2015) 0.05
    0.045585044 = product of:
      0.09117009 = sum of:
        0.05817665 = weight(_text_:web in 2194) [ClassicSimilarity], result of:
          0.05817665 = score(doc=2194,freq=8.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.36057037 = fieldWeight in 2194, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2194)
        0.032993436 = weight(_text_:search in 2194) [ClassicSimilarity], result of:
          0.032993436 = score(doc=2194,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 2194, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2194)
      0.5 = coord(2/4)
    
    Abstract
    In the Thomson Reuters Web of Science database, the subject categories of a journal are applied to all articles in the journal. However, many articles in multidisciplinary Sciences journals may only be represented by a small number of subject categories. To provide more accurate information on the research areas of articles in such journals, we can classify articles in these journals into subject categories as defined by Web of Science based on their references. For an article in a multidisciplinary sciences journal, the method counts the subject categories in all of the article's references indexed by Web of Science, and uses the most numerous subject categories of the references to determine the most appropriate classification of the article. We used articles in an issue of Proceedings of the National Academy of Sciences (PNAS) to validate the correctness of the method by comparing the obtained results with the categories of the articles as defined by PNAS and their content. This study shows that the method provides more precise search results for the subject category of interest in bibliometric investigations through recognition of articles in multidisciplinary sciences journals whose work relates to a particular subject category.
    Object
    Web of science
  17. Hagedorn, K.; Chapman, S.; Newman, D.: Enhancing search and browse using automated clustering of subject metadata (2007) 0.05
    0.045448855 = product of:
      0.09089771 = sum of:
        0.03490599 = weight(_text_:web in 1168) [ClassicSimilarity], result of:
          0.03490599 = score(doc=1168,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.21634221 = fieldWeight in 1168, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1168)
        0.055991717 = weight(_text_:search in 1168) [ClassicSimilarity], result of:
          0.055991717 = score(doc=1168,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.3258447 = fieldWeight in 1168, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=1168)
      0.5 = coord(2/4)
    
    Abstract
    The Web puzzle of online information resources often hinders end-users from effective and efficient access to these resources. Clustering resources into appropriate subject-based groupings may help alleviate these difficulties, but will it work with heterogeneous material? The University of Michigan and the University of California Irvine joined forces to test automatically enhancing metadata records using the Topic Modeling algorithm on the varied OAIster corpus. We created labels for the resulting clusters of metadata records, matched the clusters to an in-house classification system, and developed a prototype that would showcase methods for search and retrieval using the enhanced records. Results indicated that while the algorithm was somewhat time-intensive to run and using a local classification scheme had its drawbacks, precise clustering of records was achieved and the prototype interface proved that faceted classification could be powerful in helping end-users find resources.
  18. Golub, K.; Lykke, M.: Automated classification of web pages in hierarchical browsing (2009) 0.04
    0.043898437 = product of:
      0.087796874 = sum of:
        0.041137107 = weight(_text_:web in 3614) [ClassicSimilarity], result of:
          0.041137107 = score(doc=3614,freq=4.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25496176 = fieldWeight in 3614, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3614)
        0.046659768 = weight(_text_:search in 3614) [ClassicSimilarity], result of:
          0.046659768 = score(doc=3614,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.27153727 = fieldWeight in 3614, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3614)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - The purpose of this study is twofold: to investigate whether it is meaningful to use the Engineering Index (Ei) classification scheme for browsing, and then, if proven useful, to investigate the performance of an automated classification algorithm based on the Ei classification scheme. Design/methodology/approach - A user study was conducted in which users solved four controlled searching tasks. The users browsed the Ei classification scheme in order to examine the suitability of the classification systems for browsing. The classification algorithm was evaluated by the users who judged the correctness of the automatically assigned classes. Findings - The study showed that the Ei classification scheme is suited for browsing. Automatically assigned classes were on average partly correct, with some classes working better than others. Success of browsing showed to be correlated and dependent on classification correctness. Research limitations/implications - Further research should address problems of disparate evaluations of one and the same web page. Additional reasons behind browsing failures in the Ei classification scheme also need further investigation. Practical implications - Improvements for browsing were identified: describing class captions and/or listing their subclasses from start; allowing for searching for words from class captions with synonym search (easily provided for Ei since the classes are mapped to thesauri terms); when searching for class captions, returning the hierarchical tree expanded around the class in which caption the search term is found. The need for improvements of classification schemes was also indicated. Originality/value - A user-based evaluation of automated subject classification in the context of browsing has not been conducted before; hence the study also presents new findings concerning methodology.
  19. Yao, H.; Etzkorn, L.H.; Virani, S.: Automated classification and retrieval of reusable software components (2008) 0.04
    0.043117315 = product of:
      0.08623463 = sum of:
        0.029088326 = weight(_text_:web in 1382) [ClassicSimilarity], result of:
          0.029088326 = score(doc=1382,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.18028519 = fieldWeight in 1382, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1382)
        0.057146307 = weight(_text_:search in 1382) [ClassicSimilarity], result of:
          0.057146307 = score(doc=1382,freq=6.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.33256388 = fieldWeight in 1382, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1382)
      0.5 = coord(2/4)
    
    Abstract
    The authors describe their research which improves software reuse by using an automated approach to semantically search for and retrieve reusable software components in large software component repositories and on the World Wide Web (WWW). Using automation and smart (semantic) techniques, their approach speeds up the search and retrieval of reusable software components, while retaining good accuracy, and therefore improves the affordability of software reuse. A program understanding of software components and natural language understanding of user queries was employed. Then the software component descriptions were compared by matching the resulting semantic representations of the user queries to the semantic representations of the software components to search for software components that best match the user queries. A proof of concept system was developed to test the authors' approach. The results of this proof of concept system were compared to human experts, and statistical analysis was performed on the collected experimental data. The results from these experiments demonstrate that this automated semantic-based approach for software reusable component classification and retrieval is successful when compared to the labor-intensive results from the experts, thus showing that this approach can significantly benefit software reuse classification and retrieval.
  20. Peng, F.; Huang, X.: Machine learning for Asian language text classification (2007) 0.04
    0.03706527 = product of:
      0.07413054 = sum of:
        0.041137107 = weight(_text_:web in 831) [ClassicSimilarity], result of:
          0.041137107 = score(doc=831,freq=4.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25496176 = fieldWeight in 831, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=831)
        0.032993436 = weight(_text_:search in 831) [ClassicSimilarity], result of:
          0.032993436 = score(doc=831,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.19200584 = fieldWeight in 831, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=831)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - The purpose of this research is to compare several machine learning techniques on the task of Asian language text classification, such as Chinese and Japanese where no word boundary information is available in written text. The paper advocates a simple language modeling based approach for this task. Design/methodology/approach - Naïve Bayes, maximum entropy model, support vector machines, and language modeling approaches were implemented and were applied to Chinese and Japanese text classification. To investigate the influence of word segmentation, different word segmentation approaches were investigated and applied to Chinese text. A segmentation-based approach was compared with the non-segmentation-based approach. Findings - There were two findings: the experiments show that statistical language modeling can significantly outperform standard techniques, given the same set of features; and it was found that classification with word level features normally yields improved classification performance, but that classification performance is not monotonically related to segmentation accuracy. In particular, classification performance may initially improve with increased segmentation accuracy, but eventually classification performance stops improving, and can in fact even decrease, after a certain level of segmentation accuracy. Practical implications - Apply the findings to real web text classification is ongoing work. Originality/value - The paper is very relevant to Chinese and Japanese information processing, e.g. webpage classification, web search.

Years

Languages

  • e 65
  • d 12

Types

  • a 63
  • el 14
  • x 4
  • m 2
  • r 1
  • s 1
  • More… Less…