Search (4 results, page 1 of 1)

  • × author_ss:"Börner, K."
  1. Hook, P.A.; Börner, K.: Educational knowledge domain visualizations : tools to navigate, understand, and internalize the structure of scholarly knowledge and expertise (2005) 0.04
    0.035360713 = product of:
      0.070721425 = sum of:
        0.070721425 = product of:
          0.14144285 = sum of:
            0.14144285 = weight(_text_:maps in 646) [ClassicSimilarity], result of:
              0.14144285 = score(doc=646,freq=8.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.4966758 = fieldWeight in 646, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.03125 = fieldNorm(doc=646)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Today, we attempt to access all humanity's knowledge and expertise using search engines such as Google. This works well for fact retrieval. However, search engines do not enlighten the user as to the inherent structure of the information being searched or give the user feedback as to its completeness. There is no 'up' button. The user is not able to see what dataset was queried, how the entries in a search result set relate to each other or how the retrieved entities relate to the entities that were not retrieved. Effective approaches to information access and management need to take into account the human user's perceptual and cognitive capabilities. Humanity is in true need of better tools to filter, navigate, understand, and utilize (scholarly) knowledge. This chapter discusses domain maps as an alternative means to organize, navigate, and internalize scholarly knowledge. We first discuss the educational uses of maps and the benefits of information visualization and spatialization for education. Subsequently, we introduce thematic maps, cognitive and concept maps, knowledge domain visualizations, and information spaces employing the metro map metaphor. All four are visual representations of geographic or abstract semantic spaces. Given that our interest is in the access, management, and internalization of scholarly knowledge, knowledge domain visualizations are discussed at greater length. To this end, we discuss how the educational use of knowledge domain visualizations is supported by the semantic network theory of learning. We also discuss some of the elements of good knowledge domain map design. These are drawn from visual perception principles and the study of human memory, and cognition. The final section projects a potential future of educational knowledge domain visualizations.
  2. Börner, K.; Chen, C.: Visual Interfaces to Digital Libraries : Motivation, Utilization, and Socio-technical Challenges (2002) 0.03
    0.029131403 = product of:
      0.058262806 = sum of:
        0.058262806 = product of:
          0.11652561 = sum of:
            0.11652561 = weight(_text_:22 in 1359) [ClassicSimilarity], result of:
              0.11652561 = score(doc=1359,freq=4.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.6565931 = fieldWeight in 1359, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1359)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:20:07
  3. Boyack; K.W.; Börner, K.: Indicator-assisted evaluation and funding of research : visualizing the influence of grants on the number and citation counts of research papers (2003) 0.03
    0.026520537 = product of:
      0.053041074 = sum of:
        0.053041074 = product of:
          0.10608215 = sum of:
            0.10608215 = weight(_text_:maps in 1471) [ClassicSimilarity], result of:
              0.10608215 = score(doc=1471,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.37250686 = fieldWeight in 1471, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1471)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article reports research an analyzing and visualizing the impact of governmental funding an the amount and citation counts of research publications. For the first time, grant and publication data appear interlinked in one map. We start with an overview of related work and a discussion of available techniques. A concrete example- grant and publication data from Behavioral and Social Science Research, one of four extramural research programs at the National Institute an Aging (NIA)-is analyzed and visualized using the Vxlnsight® visualization tool. The analysis also illustrates current existing problems related to the quality and existence of data, data analysis, and processing. The article concludes with a list of recommendations an how to improve the quality of grant-publication maps and a discussion of research challenges for indicator-assisted evaluation and funding of research.
  4. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.01
    0.014565702 = product of:
      0.029131403 = sum of:
        0.029131403 = product of:
          0.058262806 = sum of:
            0.058262806 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.058262806 = score(doc=3355,freq=4.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56