Search (4 results, page 1 of 1)

  • × author_ss:"Leydesdorff, L."
  • × theme_ss:"Citation indexing"
  1. Leydesdorff, L.; Salah, A.A.A.: Maps on the basis of the Arts & Humanities Citation Index : the journals Leonardo and Art Journal versus "digital humanities" as a topic (2010) 0.05
    0.045934916 = product of:
      0.09186983 = sum of:
        0.09186983 = product of:
          0.18373966 = sum of:
            0.18373966 = weight(_text_:maps in 3436) [ClassicSimilarity], result of:
              0.18373966 = score(doc=3436,freq=6.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.6452008 = fieldWeight in 3436, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3436)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The possibilities of using the Arts & Humanities Citation Index (A&HCI) for journal mapping have not been sufficiently recognized because of the absence of a Journal Citations Report (JCR) for this database. A quasi-JCR for the A&HCI ([2008]) was constructed from the data contained in the Web of Science and is used for the evaluation of two journals as examples: Leonardo and Art Journal. The maps on the basis of the aggregated journal-journal citations within this domain can be compared with maps including references to journals in the Science Citation Index and Social Science Citation Index. Art journals are cited by (social) science journals more than by other art journals, but these journals draw upon one another in terms of their own references. This cultural impact in terms of being cited is not found when documents with a topic such as digital humanities are analyzed. This community of practice functions more as an intellectual organizer than a journal.
  2. Leydesdorff, L.; Moya-Anegón, F.de; Guerrero-Bote, V.P.: Journal maps on the basis of Scopus data : a comparison with the Journal Citation Reports of the ISI (2010) 0.04
    0.038279098 = product of:
      0.076558195 = sum of:
        0.076558195 = product of:
          0.15311639 = sum of:
            0.15311639 = weight(_text_:maps in 3335) [ClassicSimilarity], result of:
              0.15311639 = score(doc=3335,freq=6.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.53766733 = fieldWeight in 3335, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3335)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using the Scopus dataset (1996-2007) a grand matrix of aggregated journal-journal citations was constructed. This matrix can be compared in terms of the network structures with the matrix contained in the Journal Citation Reports (JCR) of the Institute of Scientific Information (ISI). Because the Scopus database contains a larger number of journals and covers the humanities, one would expect richer maps. However, the matrix is in this case sparser than in the case of the ISI data. This is because of (a) the larger number of journals covered by Scopus and (b) the historical record of citations older than 10 years contained in the ISI database. When the data is highly structured, as in the case of large journals, the maps are comparable, although one may have to vary a threshold (because of the differences in densities). In the case of interdisciplinary journals and journals in the social sciences and humanities, the new database does not add a lot to what is possible with the ISI databases.
  3. Leydesdorff, L.: Clusters and maps of science journals based on bi-connected graphs in Journal Citation Reports (2004) 0.03
    0.026520537 = product of:
      0.053041074 = sum of:
        0.053041074 = product of:
          0.10608215 = sum of:
            0.10608215 = weight(_text_:maps in 4427) [ClassicSimilarity], result of:
              0.10608215 = score(doc=4427,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.37250686 = fieldWeight in 4427, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4427)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  4. Leydesdorff, L.: Visualization of the citation impact environments of scientific journals : an online mapping exercise (2007) 0.02
    0.022100445 = product of:
      0.04420089 = sum of:
        0.04420089 = product of:
          0.08840178 = sum of:
            0.08840178 = weight(_text_:maps in 82) [ClassicSimilarity], result of:
              0.08840178 = score(doc=82,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.31042236 = fieldWeight in 82, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=82)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Aggregated journal-journal citation networks based on the Journal Citation Reports 2004 of the Science Citation Index (5,968 journals) and the Social Science Citation Index (1,712 journals) are made accessible from the perspective of any of these journals. A vector-space model Is used for normalization, and the results are brought online at http://www.leydesdorff.net/jcr04 as input files for the visualization program Pajek. The user is thus able to analyze the citation environment in terms of links and graphs. Furthermore, the local impact of a journal is defined as its share of the total citations in the specific journal's citation environments; the vertical size of the nodes is varied proportionally to this citation impact. The horizontal size of each node can be used to provide the same information after correction for within-journal (self-)citations. In the "citing" environment, the equivalents of this measure can be considered as a citation activity index which maps how the relevant journal environment is perceived by the collective of authors of a given journal. As a policy application, the mechanism of Interdisciplinary developments among the sciences is elaborated for the case of nanotechnology journals.