Search (33 results, page 1 of 2)

  • × theme_ss:"Citation indexing"
  1. McCain, K.W.: Core journal networks and and cocitation maps (1991) 0.07
    0.070721425 = product of:
      0.14144285 = sum of:
        0.14144285 = product of:
          0.2828857 = sum of:
            0.2828857 = weight(_text_:maps in 6904) [ClassicSimilarity], result of:
              0.2828857 = score(doc=6904,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.9933516 = fieldWeight in 6904, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.125 = fieldNorm(doc=6904)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  2. Lin, X.; White, H.D.; Buzydlowski, J.: Real-time author co-citation mapping for online searching (2003) 0.05
    0.045934916 = product of:
      0.09186983 = sum of:
        0.09186983 = product of:
          0.18373966 = sum of:
            0.18373966 = weight(_text_:maps in 1080) [ClassicSimilarity], result of:
              0.18373966 = score(doc=1080,freq=6.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.6452008 = fieldWeight in 1080, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1080)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Author searching is traditionally based on the matching of name strings. Special characteristics of authors as personal names and subject indicators are not considered. This makes it difficult to identify a set of related authors or to group authors by subjects in retrieval systems. In this paper, we describe the design and implementation of a prototype visualization system to enhance author searching. The system, called AuthorLink, is based on author co-citation analysis and visualization mapping algorithms such as Kohonen's feature maps and Pathfinder networks. AuthorLink produces interactive author maps in real time from a database of 1.26 million records supplied by the Institute for Scientific Information. The maps show subject groupings and more fine-grained intellectual connections among authors. Through the interactive interface the user can take advantage of such information to refine queries and retrieve documents through point-and-click manipulation of the authors' names.
  3. Leydesdorff, L.; Salah, A.A.A.: Maps on the basis of the Arts & Humanities Citation Index : the journals Leonardo and Art Journal versus "digital humanities" as a topic (2010) 0.05
    0.045934916 = product of:
      0.09186983 = sum of:
        0.09186983 = product of:
          0.18373966 = sum of:
            0.18373966 = weight(_text_:maps in 3436) [ClassicSimilarity], result of:
              0.18373966 = score(doc=3436,freq=6.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.6452008 = fieldWeight in 3436, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3436)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The possibilities of using the Arts & Humanities Citation Index (A&HCI) for journal mapping have not been sufficiently recognized because of the absence of a Journal Citations Report (JCR) for this database. A quasi-JCR for the A&HCI ([2008]) was constructed from the data contained in the Web of Science and is used for the evaluation of two journals as examples: Leonardo and Art Journal. The maps on the basis of the aggregated journal-journal citations within this domain can be compared with maps including references to journals in the Science Citation Index and Social Science Citation Index. Art journals are cited by (social) science journals more than by other art journals, but these journals draw upon one another in terms of their own references. This cultural impact in terms of being cited is not found when documents with a topic such as digital humanities are analyzed. This community of practice functions more as an intellectual organizer than a journal.
  4. Small, H.: Visualizing science by citation mapping (1999) 0.04
    0.043756653 = product of:
      0.087513305 = sum of:
        0.087513305 = product of:
          0.17502661 = sum of:
            0.17502661 = weight(_text_:maps in 3920) [ClassicSimilarity], result of:
              0.17502661 = score(doc=3920,freq=4.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.61460495 = fieldWeight in 3920, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3920)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Science mapping is discussed in the general context of information visualization. Attempts to construct maps of science using citation data are reviewed, focusing on the use of co-citation clusters. New work is reported on a dataset of about 36.000 documents using simplified methods for ordination, and nesting maps hierarchically. an overall map of the dataset shows the multidisciplinary breadth of the document sample, and submaps allow drilling down the document level. An effort to visualize these data using advanced virtual reality software is described, and the creation of document pathways through the map is seen as a realization of Bush's associative trails
  5. Leydesdorff, L.; Moya-Anegón, F.de; Guerrero-Bote, V.P.: Journal maps on the basis of Scopus data : a comparison with the Journal Citation Reports of the ISI (2010) 0.04
    0.038279098 = product of:
      0.076558195 = sum of:
        0.076558195 = product of:
          0.15311639 = sum of:
            0.15311639 = weight(_text_:maps in 3335) [ClassicSimilarity], result of:
              0.15311639 = score(doc=3335,freq=6.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.53766733 = fieldWeight in 3335, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3335)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using the Scopus dataset (1996-2007) a grand matrix of aggregated journal-journal citations was constructed. This matrix can be compared in terms of the network structures with the matrix contained in the Journal Citation Reports (JCR) of the Institute of Scientific Information (ISI). Because the Scopus database contains a larger number of journals and covers the humanities, one would expect richer maps. However, the matrix is in this case sparser than in the case of the ISI data. This is because of (a) the larger number of journals covered by Scopus and (b) the historical record of citations older than 10 years contained in the ISI database. When the data is highly structured, as in the case of large journals, the maps are comparable, although one may have to vary a threshold (because of the differences in densities). In the case of interdisciplinary journals and journals in the social sciences and humanities, the new database does not add a lot to what is possible with the ISI databases.
  6. Milman, B.L.: Individual co-citation clusters as nuclei of complete and dynamic informetric models of scientific and technological areas (1994) 0.03
    0.030940626 = product of:
      0.06188125 = sum of:
        0.06188125 = product of:
          0.1237625 = sum of:
            0.1237625 = weight(_text_:maps in 37) [ClassicSimilarity], result of:
              0.1237625 = score(doc=37,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.43459132 = fieldWeight in 37, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=37)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Describes the construction of improved informetric models of individual scientific and technological areas on the basis of individual co citation clusters. The developed methodology of replenishment of research front with accidently absent papers describes the model more completely. Proposes the simple method of cluster 'dynamization' for the study of evolution of research area. The transition under consideration from co citation clusters to lexical maps of papers and patents enables the monitoring of the relationshuip between R and D in a given technological area. Provides the example from modern chemical engineering of Pressure-Swing Adsorption
  7. Nicolaisen, J.: Citation analysis (2007) 0.03
    0.027465349 = product of:
      0.054930698 = sum of:
        0.054930698 = product of:
          0.109861396 = sum of:
            0.109861396 = weight(_text_:22 in 6091) [ClassicSimilarity], result of:
              0.109861396 = score(doc=6091,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.61904186 = fieldWeight in 6091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=6091)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13. 7.2008 19:53:22
  8. Døsen, K.: One more reference on self-reference (1992) 0.03
    0.027465349 = product of:
      0.054930698 = sum of:
        0.054930698 = product of:
          0.109861396 = sum of:
            0.109861396 = weight(_text_:22 in 4604) [ClassicSimilarity], result of:
              0.109861396 = score(doc=4604,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.61904186 = fieldWeight in 4604, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=4604)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    7. 2.2005 14:10:22
  9. Chen, C.; Paul, R.J.; O'Keefe, B.: Fitting the Jigsaw of citation : information visualization in domain analysis (2001) 0.03
    0.026520537 = product of:
      0.053041074 = sum of:
        0.053041074 = product of:
          0.10608215 = sum of:
            0.10608215 = weight(_text_:maps in 5766) [ClassicSimilarity], result of:
              0.10608215 = score(doc=5766,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.37250686 = fieldWeight in 5766, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5766)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Domain visualization is one of the new research fronts resulted from the proliferation of information visualization, aiming to reveal the essence of a knowledge domain. Information visualization plays an integral role in modeling and representing intellectual structures associated with scientific disciplines. In this article, the domain of computer graphics is visualized based on author cocitation patterns derived from an 18-year span of the prestigious IEEE Computer Graphics and Applications (1982-1999). This domain visualization utilizes a series of visualization and animation techniques, including author cocitation maps, citation time lines, animation of a highdimensional specialty space, and institutional profiles. This approach not only augments traditional domain analysis and the understanding of scientific disciplines, but also produces a persistent and shared knowledge space for researchers to keep track the development of knowledge more effectively. The results of the domain visualization are discussed and triangulated in a broader context of the computer graphics field
  10. Leydesdorff, L.: Clusters and maps of science journals based on bi-connected graphs in Journal Citation Reports (2004) 0.03
    0.026520537 = product of:
      0.053041074 = sum of:
        0.053041074 = product of:
          0.10608215 = sum of:
            0.10608215 = weight(_text_:maps in 4427) [ClassicSimilarity], result of:
              0.10608215 = score(doc=4427,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.37250686 = fieldWeight in 4427, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4427)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  11. Marshakova-Shaikevich, I.: Bibliometric maps of field of science (2005) 0.03
    0.026520537 = product of:
      0.053041074 = sum of:
        0.053041074 = product of:
          0.10608215 = sum of:
            0.10608215 = weight(_text_:maps in 1069) [ClassicSimilarity], result of:
              0.10608215 = score(doc=1069,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.37250686 = fieldWeight in 1069, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1069)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  12. Chen, C.: Mapping scientific frontiers : the quest for knowledge visualization (2003) 0.03
    0.0250038 = product of:
      0.0500076 = sum of:
        0.0500076 = product of:
          0.1000152 = sum of:
            0.1000152 = weight(_text_:maps in 2213) [ClassicSimilarity], result of:
              0.1000152 = score(doc=2213,freq=4.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.35120282 = fieldWeight in 2213, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2213)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: JASIST 55(2004) no.4, S.363-365 (J.W. Schneider): "Theories and methods for mapping scientific frontiers have existed for decades-especially within quantitative studies of science. This book investigates mapping scientific frontiers from the perspective of visual thinking and visual exploration (visual communication). The central theme is construction of visual-spatial representations that may convey insights into the dynamic structure of scientific frontiers. The author's previous book, Information Visualisation and Virtual Environments (1999), also concerns some of the ideas behind and possible benefits of visual communication. This new book takes a special focus an knowledge visualization, particularly in relation to science literature. The book is not a technical tutorial as the focus is an principles of visual communication and ways that may reveal the dynamics of scientific frontiers. The new approach to science mapping presented is the culmination of different approaches from several disciplines, such as philosophy of science, information retrieval, scientometrics, domain analysis, and information visualization. The book therefore addresses an audience with different disciplinary backgrounds and tries to stimulate interdisciplinary research. Chapter 1, The Growth of Scientific Knowledge, introduces a range of examples that illustrate fundamental issues concerning visual communication in general and science mapping in particular. Chapter 2, Mapping the Universe, focuses an the basic principles of cartography for visual communication. Chapter 3, Mapping the Mind, turns the attention inward and explores the design of mind maps, maps that represent our thoughts, experience, and knowledge. Chapter 4, Enabling Techniques for Science Mapping, essentially outlines the author's basic approach to science mapping.
  13. Van der Veer Martens, B.: Do citation systems represent theories of truth? (2001) 0.02
    0.024276167 = product of:
      0.048552334 = sum of:
        0.048552334 = product of:
          0.09710467 = sum of:
            0.09710467 = weight(_text_:22 in 3925) [ClassicSimilarity], result of:
              0.09710467 = score(doc=3925,freq=4.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.54716086 = fieldWeight in 3925, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3925)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2006 15:22:28
  14. Marion, L.S.; McCain, K.W.: Contrasting views of software engineering journals : author cocitation choices and indexer vocabulary assignments (2001) 0.02
    0.022100445 = product of:
      0.04420089 = sum of:
        0.04420089 = product of:
          0.08840178 = sum of:
            0.08840178 = weight(_text_:maps in 5767) [ClassicSimilarity], result of:
              0.08840178 = score(doc=5767,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.31042236 = fieldWeight in 5767, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5767)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We explore the intellectual subject structure and research themes in software engineering through the identification and analysis of a core journal literature. We examine this literature via two expert perspectives: that of the author, who identified significant work by citing it (journal cocitation analysis), and that of the professional indexer, who tags published work with subject terms to facilitate retrieval from a bibliographic database (subject profile analysis). The data sources are SCISEARCH (the on-line version of Science Citation Index), and INSPEC (a database covering software engineering, computer science, and information systems). We use data visualization tools (cluster analysis, multidimensional scaling, and PFNets) to show the "intellectual maps" of software engineering. Cocitation and subject profile analyses demonstrate that software engineering is a distinct interdisciplinary field, valuing practical and applied aspects, and spanning a subject continuum from "programming-in-the-smalI" to "programming-in-the-large." This continuum mirrors the software development life cycle by taking the operating system or major application from initial programming through project management, implementation, and maintenance. Object orientation is an integral but distinct subject area in software engineering. Key differences are the importance of management and programming: (1) cocitation analysis emphasizes project management and systems development; (2) programming techniques/languages are more influential in subject profiles; (3) cocitation profiles place object-oriented journals separately and centrally while the subject profile analysis locates these journals with the programming/languages group
  15. Leydesdorff, L.: Visualization of the citation impact environments of scientific journals : an online mapping exercise (2007) 0.02
    0.022100445 = product of:
      0.04420089 = sum of:
        0.04420089 = product of:
          0.08840178 = sum of:
            0.08840178 = weight(_text_:maps in 82) [ClassicSimilarity], result of:
              0.08840178 = score(doc=82,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.31042236 = fieldWeight in 82, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=82)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Aggregated journal-journal citation networks based on the Journal Citation Reports 2004 of the Science Citation Index (5,968 journals) and the Social Science Citation Index (1,712 journals) are made accessible from the perspective of any of these journals. A vector-space model Is used for normalization, and the results are brought online at http://www.leydesdorff.net/jcr04 as input files for the visualization program Pajek. The user is thus able to analyze the citation environment in terms of links and graphs. Furthermore, the local impact of a journal is defined as its share of the total citations in the specific journal's citation environments; the vertical size of the nodes is varied proportionally to this citation impact. The horizontal size of each node can be used to provide the same information after correction for within-journal (self-)citations. In the "citing" environment, the equivalents of this measure can be considered as a citation activity index which maps how the relevant journal environment is perceived by the collective of authors of a given journal. As a policy application, the mechanism of Interdisciplinary developments among the sciences is elaborated for the case of nanotechnology journals.
  16. De Bellis, N.: Bibliometrics and citation analysis : from the Science citation index to cybermetrics (2008) 0.02
    0.017680356 = product of:
      0.035360713 = sum of:
        0.035360713 = product of:
          0.070721425 = sum of:
            0.070721425 = weight(_text_:maps in 3585) [ClassicSimilarity], result of:
              0.070721425 = score(doc=3585,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.2483379 = fieldWeight in 3585, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3585)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Inhalt: Biblio/sciento/infor-metrics : terminological issues and early historical developments -- The empirical foundations of bibliometrics : the Science citation index -- The philosophical foundations of bibliometrics : Bernal, Merton, Price, Garfield, and Small -- The mathematical foundations of bibliometrics -- Maps and paradigms : bibliographic citations at the service of the history and sociology of science -- Impact factor and the evaluation of scientists : bibliographic citations at the service of science policy and management -- On the shoulders of dwarfs : citation as rhetorical device and the criticisms to the normative model -- Measuring scientific communication in the twentieth century : from bibliometrics to cybermetrics.
  17. Garfield, E.; Stock, W.G.: Citation Consciousness : Interview with Eugene Garfiels, chairman emeritus of ISI; Philadelphia (2002) 0.02
    0.017165843 = product of:
      0.034331687 = sum of:
        0.034331687 = product of:
          0.06866337 = sum of:
            0.06866337 = weight(_text_:22 in 613) [ClassicSimilarity], result of:
              0.06866337 = score(doc=613,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.38690117 = fieldWeight in 613, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=613)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Password. 2002, H.6, S.22-25
  18. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.01
    0.014565702 = product of:
      0.029131403 = sum of:
        0.029131403 = product of:
          0.058262806 = sum of:
            0.058262806 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.058262806 = score(doc=2763,freq=4.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.32829654 = fieldWeight in 2763, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2763)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2009 19:22:35
  19. Bensman, S.J.: Eugene Garfield, Francis Narin, and PageRank : the theoretical bases of the Google search engine (2013) 0.01
    0.0137326745 = product of:
      0.027465349 = sum of:
        0.027465349 = product of:
          0.054930698 = sum of:
            0.054930698 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.054930698 = score(doc=1149,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.30952093 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1149)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    17.12.2013 11:02:22
  20. Garfield, E.: Recollections of Irving H. Sher 1924-1996 : Polymath/information scientist extraordinaire (2001) 0.01
    0.01201609 = product of:
      0.02403218 = sum of:
        0.02403218 = product of:
          0.04806436 = sum of:
            0.04806436 = weight(_text_:22 in 6920) [ClassicSimilarity], result of:
              0.04806436 = score(doc=6920,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.2708308 = fieldWeight in 6920, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6920)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    16.12.2001 14:01:22