Search (22 results, page 1 of 2)

  • × theme_ss:"Citation indexing"
  • × year_i:[2000 TO 2010}
  1. Lin, X.; White, H.D.; Buzydlowski, J.: Real-time author co-citation mapping for online searching (2003) 0.05
    0.045934916 = product of:
      0.09186983 = sum of:
        0.09186983 = product of:
          0.18373966 = sum of:
            0.18373966 = weight(_text_:maps in 1080) [ClassicSimilarity], result of:
              0.18373966 = score(doc=1080,freq=6.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.6452008 = fieldWeight in 1080, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1080)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Author searching is traditionally based on the matching of name strings. Special characteristics of authors as personal names and subject indicators are not considered. This makes it difficult to identify a set of related authors or to group authors by subjects in retrieval systems. In this paper, we describe the design and implementation of a prototype visualization system to enhance author searching. The system, called AuthorLink, is based on author co-citation analysis and visualization mapping algorithms such as Kohonen's feature maps and Pathfinder networks. AuthorLink produces interactive author maps in real time from a database of 1.26 million records supplied by the Institute for Scientific Information. The maps show subject groupings and more fine-grained intellectual connections among authors. Through the interactive interface the user can take advantage of such information to refine queries and retrieve documents through point-and-click manipulation of the authors' names.
  2. Nicolaisen, J.: Citation analysis (2007) 0.03
    0.027465349 = product of:
      0.054930698 = sum of:
        0.054930698 = product of:
          0.109861396 = sum of:
            0.109861396 = weight(_text_:22 in 6091) [ClassicSimilarity], result of:
              0.109861396 = score(doc=6091,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.61904186 = fieldWeight in 6091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=6091)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13. 7.2008 19:53:22
  3. Chen, C.; Paul, R.J.; O'Keefe, B.: Fitting the Jigsaw of citation : information visualization in domain analysis (2001) 0.03
    0.026520537 = product of:
      0.053041074 = sum of:
        0.053041074 = product of:
          0.10608215 = sum of:
            0.10608215 = weight(_text_:maps in 5766) [ClassicSimilarity], result of:
              0.10608215 = score(doc=5766,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.37250686 = fieldWeight in 5766, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5766)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Domain visualization is one of the new research fronts resulted from the proliferation of information visualization, aiming to reveal the essence of a knowledge domain. Information visualization plays an integral role in modeling and representing intellectual structures associated with scientific disciplines. In this article, the domain of computer graphics is visualized based on author cocitation patterns derived from an 18-year span of the prestigious IEEE Computer Graphics and Applications (1982-1999). This domain visualization utilizes a series of visualization and animation techniques, including author cocitation maps, citation time lines, animation of a highdimensional specialty space, and institutional profiles. This approach not only augments traditional domain analysis and the understanding of scientific disciplines, but also produces a persistent and shared knowledge space for researchers to keep track the development of knowledge more effectively. The results of the domain visualization are discussed and triangulated in a broader context of the computer graphics field
  4. Leydesdorff, L.: Clusters and maps of science journals based on bi-connected graphs in Journal Citation Reports (2004) 0.03
    0.026520537 = product of:
      0.053041074 = sum of:
        0.053041074 = product of:
          0.10608215 = sum of:
            0.10608215 = weight(_text_:maps in 4427) [ClassicSimilarity], result of:
              0.10608215 = score(doc=4427,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.37250686 = fieldWeight in 4427, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4427)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  5. Marshakova-Shaikevich, I.: Bibliometric maps of field of science (2005) 0.03
    0.026520537 = product of:
      0.053041074 = sum of:
        0.053041074 = product of:
          0.10608215 = sum of:
            0.10608215 = weight(_text_:maps in 1069) [ClassicSimilarity], result of:
              0.10608215 = score(doc=1069,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.37250686 = fieldWeight in 1069, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1069)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  6. Chen, C.: Mapping scientific frontiers : the quest for knowledge visualization (2003) 0.03
    0.0250038 = product of:
      0.0500076 = sum of:
        0.0500076 = product of:
          0.1000152 = sum of:
            0.1000152 = weight(_text_:maps in 2213) [ClassicSimilarity], result of:
              0.1000152 = score(doc=2213,freq=4.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.35120282 = fieldWeight in 2213, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2213)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: JASIST 55(2004) no.4, S.363-365 (J.W. Schneider): "Theories and methods for mapping scientific frontiers have existed for decades-especially within quantitative studies of science. This book investigates mapping scientific frontiers from the perspective of visual thinking and visual exploration (visual communication). The central theme is construction of visual-spatial representations that may convey insights into the dynamic structure of scientific frontiers. The author's previous book, Information Visualisation and Virtual Environments (1999), also concerns some of the ideas behind and possible benefits of visual communication. This new book takes a special focus an knowledge visualization, particularly in relation to science literature. The book is not a technical tutorial as the focus is an principles of visual communication and ways that may reveal the dynamics of scientific frontiers. The new approach to science mapping presented is the culmination of different approaches from several disciplines, such as philosophy of science, information retrieval, scientometrics, domain analysis, and information visualization. The book therefore addresses an audience with different disciplinary backgrounds and tries to stimulate interdisciplinary research. Chapter 1, The Growth of Scientific Knowledge, introduces a range of examples that illustrate fundamental issues concerning visual communication in general and science mapping in particular. Chapter 2, Mapping the Universe, focuses an the basic principles of cartography for visual communication. Chapter 3, Mapping the Mind, turns the attention inward and explores the design of mind maps, maps that represent our thoughts, experience, and knowledge. Chapter 4, Enabling Techniques for Science Mapping, essentially outlines the author's basic approach to science mapping.
  7. Van der Veer Martens, B.: Do citation systems represent theories of truth? (2001) 0.02
    0.024276167 = product of:
      0.048552334 = sum of:
        0.048552334 = product of:
          0.09710467 = sum of:
            0.09710467 = weight(_text_:22 in 3925) [ClassicSimilarity], result of:
              0.09710467 = score(doc=3925,freq=4.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.54716086 = fieldWeight in 3925, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3925)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2006 15:22:28
  8. Marion, L.S.; McCain, K.W.: Contrasting views of software engineering journals : author cocitation choices and indexer vocabulary assignments (2001) 0.02
    0.022100445 = product of:
      0.04420089 = sum of:
        0.04420089 = product of:
          0.08840178 = sum of:
            0.08840178 = weight(_text_:maps in 5767) [ClassicSimilarity], result of:
              0.08840178 = score(doc=5767,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.31042236 = fieldWeight in 5767, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5767)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We explore the intellectual subject structure and research themes in software engineering through the identification and analysis of a core journal literature. We examine this literature via two expert perspectives: that of the author, who identified significant work by citing it (journal cocitation analysis), and that of the professional indexer, who tags published work with subject terms to facilitate retrieval from a bibliographic database (subject profile analysis). The data sources are SCISEARCH (the on-line version of Science Citation Index), and INSPEC (a database covering software engineering, computer science, and information systems). We use data visualization tools (cluster analysis, multidimensional scaling, and PFNets) to show the "intellectual maps" of software engineering. Cocitation and subject profile analyses demonstrate that software engineering is a distinct interdisciplinary field, valuing practical and applied aspects, and spanning a subject continuum from "programming-in-the-smalI" to "programming-in-the-large." This continuum mirrors the software development life cycle by taking the operating system or major application from initial programming through project management, implementation, and maintenance. Object orientation is an integral but distinct subject area in software engineering. Key differences are the importance of management and programming: (1) cocitation analysis emphasizes project management and systems development; (2) programming techniques/languages are more influential in subject profiles; (3) cocitation profiles place object-oriented journals separately and centrally while the subject profile analysis locates these journals with the programming/languages group
  9. Leydesdorff, L.: Visualization of the citation impact environments of scientific journals : an online mapping exercise (2007) 0.02
    0.022100445 = product of:
      0.04420089 = sum of:
        0.04420089 = product of:
          0.08840178 = sum of:
            0.08840178 = weight(_text_:maps in 82) [ClassicSimilarity], result of:
              0.08840178 = score(doc=82,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.31042236 = fieldWeight in 82, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=82)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Aggregated journal-journal citation networks based on the Journal Citation Reports 2004 of the Science Citation Index (5,968 journals) and the Social Science Citation Index (1,712 journals) are made accessible from the perspective of any of these journals. A vector-space model Is used for normalization, and the results are brought online at http://www.leydesdorff.net/jcr04 as input files for the visualization program Pajek. The user is thus able to analyze the citation environment in terms of links and graphs. Furthermore, the local impact of a journal is defined as its share of the total citations in the specific journal's citation environments; the vertical size of the nodes is varied proportionally to this citation impact. The horizontal size of each node can be used to provide the same information after correction for within-journal (self-)citations. In the "citing" environment, the equivalents of this measure can be considered as a citation activity index which maps how the relevant journal environment is perceived by the collective of authors of a given journal. As a policy application, the mechanism of Interdisciplinary developments among the sciences is elaborated for the case of nanotechnology journals.
  10. De Bellis, N.: Bibliometrics and citation analysis : from the Science citation index to cybermetrics (2008) 0.02
    0.017680356 = product of:
      0.035360713 = sum of:
        0.035360713 = product of:
          0.070721425 = sum of:
            0.070721425 = weight(_text_:maps in 3585) [ClassicSimilarity], result of:
              0.070721425 = score(doc=3585,freq=2.0), product of:
                0.28477904 = queryWeight, product of:
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.050679237 = queryNorm
                0.2483379 = fieldWeight in 3585, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.619245 = idf(docFreq=435, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3585)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Inhalt: Biblio/sciento/infor-metrics : terminological issues and early historical developments -- The empirical foundations of bibliometrics : the Science citation index -- The philosophical foundations of bibliometrics : Bernal, Merton, Price, Garfield, and Small -- The mathematical foundations of bibliometrics -- Maps and paradigms : bibliographic citations at the service of the history and sociology of science -- Impact factor and the evaluation of scientists : bibliographic citations at the service of science policy and management -- On the shoulders of dwarfs : citation as rhetorical device and the criticisms to the normative model -- Measuring scientific communication in the twentieth century : from bibliometrics to cybermetrics.
  11. Garfield, E.; Stock, W.G.: Citation Consciousness : Interview with Eugene Garfiels, chairman emeritus of ISI; Philadelphia (2002) 0.02
    0.017165843 = product of:
      0.034331687 = sum of:
        0.034331687 = product of:
          0.06866337 = sum of:
            0.06866337 = weight(_text_:22 in 613) [ClassicSimilarity], result of:
              0.06866337 = score(doc=613,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.38690117 = fieldWeight in 613, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=613)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Password. 2002, H.6, S.22-25
  12. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.01
    0.014565702 = product of:
      0.029131403 = sum of:
        0.029131403 = product of:
          0.058262806 = sum of:
            0.058262806 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.058262806 = score(doc=2763,freq=4.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.32829654 = fieldWeight in 2763, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2763)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2009 19:22:35
  13. Garfield, E.: Recollections of Irving H. Sher 1924-1996 : Polymath/information scientist extraordinaire (2001) 0.01
    0.01201609 = product of:
      0.02403218 = sum of:
        0.02403218 = product of:
          0.04806436 = sum of:
            0.04806436 = weight(_text_:22 in 6920) [ClassicSimilarity], result of:
              0.04806436 = score(doc=6920,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.2708308 = fieldWeight in 6920, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6920)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    16.12.2001 14:01:22
  14. Van der Veer Martens, B.; Goodrum, G.: ¬The diffusion of theories : a functional approach (2006) 0.01
    0.01201609 = product of:
      0.02403218 = sum of:
        0.02403218 = product of:
          0.04806436 = sum of:
            0.04806436 = weight(_text_:22 in 5269) [ClassicSimilarity], result of:
              0.04806436 = score(doc=5269,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.2708308 = fieldWeight in 5269, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5269)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2006 15:20:01
  15. wst: Cut-and-paste-Wissenschaft (2003) 0.01
    0.010299506 = product of:
      0.020599011 = sum of:
        0.020599011 = product of:
          0.041198023 = sum of:
            0.041198023 = weight(_text_:22 in 1270) [ClassicSimilarity], result of:
              0.041198023 = score(doc=1270,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.23214069 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1270)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    "Mikhail Simkin und Vwani Roychowdhury von der University of Califomia, Los Angeles, haben eine in der wissenschaftlichen Gemeinschaft verbreitete Unsitte erstmals quantitativ erfasst. Die Wissenschaftler analysierten die Verbreitung von Druckfehlern in den Literaturlisten wissenschaftlicher Arbeiten (www.arxiv.org/abs/cond-mat/0212043). 78 Prozent aller zitierten Aufsätze - so schätzen die Forscher - haben die zitierenden Wissenschaftler demnach nicht gelesen, sondern nur per 'cut and paste' von einer Vorlage in ihre eigene Literaturliste übernommen. Das könne man beispielsweise abschätzen aus der Analyse fehlerhafter Seitenangaben in der Literaturliste eines 1973 veröffentlichten Aufsatzes über die Struktur zweidimensionaler Kristalle: Dieser Aufsatz ist rund 4300 mal zitiert worden. In 196 Fällen enthalten die Zitate jedoch Fehler in der Jahreszahl, dem Band der Zeitschrift oder der Seitenzahl, die als Indikatoren für cut and paste genommen werden können, denn man kann, obwohl es Milliarden Möglichkeiten gibt, nur 45 verschiedene Arten von Druckfehlern unterscheiden. In erster Näherung ergibt sich eine Obergrenze für die Zahl der `echten Leser' daher aus der Zahl der unterscheidbaren Druckfehler (45) geteilt durch die Gesamtzahl der Publikationen mit Druckfehler (196), das macht etwa 22 Prozent."
  16. Chan, H.C.; Kim, H.-W.; Tan, W.C.: Information systems citation patterns from International Conference on Information Systems articles (2006) 0.01
    0.010299506 = product of:
      0.020599011 = sum of:
        0.020599011 = product of:
          0.041198023 = sum of:
            0.041198023 = weight(_text_:22 in 201) [ClassicSimilarity], result of:
              0.041198023 = score(doc=201,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.23214069 = fieldWeight in 201, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=201)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    3. 1.2007 17:22:03
  17. H-Index auch im Web of Science (2008) 0.01
    0.010299506 = product of:
      0.020599011 = sum of:
        0.020599011 = product of:
          0.041198023 = sum of:
            0.041198023 = weight(_text_:22 in 590) [ClassicSimilarity], result of:
              0.041198023 = score(doc=590,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.23214069 = fieldWeight in 590, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=590)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    6. 4.2008 19:04:22
  18. Mingers, J.; Burrell, Q.L.: Modeling citation behavior in Management Science journals (2006) 0.01
    0.010299506 = product of:
      0.020599011 = sum of:
        0.020599011 = product of:
          0.041198023 = sum of:
            0.041198023 = weight(_text_:22 in 994) [ClassicSimilarity], result of:
              0.041198023 = score(doc=994,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.23214069 = fieldWeight in 994, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=994)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    26.12.2007 19:22:05
  19. Ma, N.; Guan, J.; Zhao, Y.: Bringing PageRank to the citation analysis (2008) 0.01
    0.010299506 = product of:
      0.020599011 = sum of:
        0.020599011 = product of:
          0.041198023 = sum of:
            0.041198023 = weight(_text_:22 in 2064) [ClassicSimilarity], result of:
              0.041198023 = score(doc=2064,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.23214069 = fieldWeight in 2064, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2064)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    31. 7.2008 14:22:05
  20. Hayer, L.: Lazarsfeld zitiert : eine bibliometrische Analyse (2008) 0.01
    0.008582922 = product of:
      0.017165843 = sum of:
        0.017165843 = product of:
          0.034331687 = sum of:
            0.034331687 = weight(_text_:22 in 1934) [ClassicSimilarity], result of:
              0.034331687 = score(doc=1934,freq=2.0), product of:
                0.17747006 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679237 = queryNorm
                0.19345059 = fieldWeight in 1934, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1934)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 6.2008 12:54:12