Search (5 results, page 1 of 1)

  • × author_ss:"Crestani, F."
  1. Varathan, K.D.; Giachanou, A.; Crestani, F.: Comparative opinion mining : a review (2017) 0.01
    0.010818963 = product of:
      0.04327585 = sum of:
        0.04327585 = weight(_text_:reference in 3540) [ClassicSimilarity], result of:
          0.04327585 = score(doc=3540,freq=2.0), product of:
            0.19255297 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.047329273 = queryNorm
            0.22474778 = fieldWeight in 3540, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3540)
      0.25 = coord(1/4)
    
    Abstract
    Opinion mining refers to the use of natural language processing, text analysis, and computational linguistics to identify and extract subjective information in textual material. Opinion mining, also known as sentiment analysis, has received a lot of attention in recent times, as it provides a number of tools to analyze public opinion on a number of different topics. Comparative opinion mining is a subfield of opinion mining which deals with identifying and extracting information that is expressed in a comparative form (e.g., "paper X is better than the Y"). Comparative opinion mining plays a very important role when one tries to evaluate something because it provides a reference point for the comparison. This paper provides a review of the area of comparative opinion mining. It is the first review that cover specifically this topic as all previous reviews dealt mostly with general opinion mining. This survey covers comparative opinion mining from two different angles. One from the perspective of techniques and the other from the perspective of comparative opinion elements. It also incorporates preprocessing tools as well as data set that were used by past researchers that can be useful to future researchers in the field of comparative opinion mining.
  2. Simeoni, F.; Yakici, M.; Neely, S.; Crestani, F.: Metadata harvesting for content-based distributed information retrieval (2008) 0.01
    0.009389759 = product of:
      0.037559036 = sum of:
        0.037559036 = product of:
          0.07511807 = sum of:
            0.07511807 = weight(_text_:file in 1336) [ClassicSimilarity], result of:
              0.07511807 = score(doc=1336,freq=2.0), product of:
                0.25368783 = queryWeight, product of:
                  5.3600616 = idf(docFreq=564, maxDocs=44218)
                  0.047329273 = queryNorm
                0.29610437 = fieldWeight in 1336, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3600616 = idf(docFreq=564, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1336)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    We propose an approach to content-based Distributed Information Retrieval based on the periodic and incremental centralization of full-content indices of widely dispersed and autonomously managed document sources. Inspired by the success of the Open Archive Initiative's (OAI) Protocol for metadata harvesting, the approach occupies middle ground between content crawling and distributed retrieval. As in crawling, some data move toward the retrieval process, but it is statistics about the content rather than content itself; this grants more efficient use of network resources and wider scope of application. As in distributed retrieval, some processing is distributed along with the data, but it is indexing rather than retrieval; this reduces the costs of content provision while promoting the simplicity, effectiveness, and responsiveness of retrieval. Overall, we argue that the approach retains the good properties of centralized retrieval without renouncing to cost-effective, large-scale resource pooling. We discuss the requirements associated with the approach and identify two strategies to deploy it on top of the OAI infrastructure. In particular, we define a minimal extension of the OAI protocol which supports the coordinated harvesting of full-content indices and descriptive metadata for content resources. Finally, we report on the implementation of a proof-of-concept prototype service for multimodel content-based retrieval of distributed file collections.
  3. Crestani, F.; Rijsbergen, C.J. van: Information retrieval by imaging (1996) 0.00
    0.004809347 = product of:
      0.019237388 = sum of:
        0.019237388 = product of:
          0.038474776 = sum of:
            0.038474776 = weight(_text_:22 in 6967) [ClassicSimilarity], result of:
              0.038474776 = score(doc=6967,freq=2.0), product of:
                0.16573904 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047329273 = queryNorm
                0.23214069 = fieldWeight in 6967, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6967)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon
  4. Crestani, F.; Dominich, S.; Lalmas, M.; Rijsbergen, C.J.K. van: Mathematical, logical, and formal methods in information retrieval : an introduction to the special issue (2003) 0.00
    0.004809347 = product of:
      0.019237388 = sum of:
        0.019237388 = product of:
          0.038474776 = sum of:
            0.038474776 = weight(_text_:22 in 1451) [ClassicSimilarity], result of:
              0.038474776 = score(doc=1451,freq=2.0), product of:
                0.16573904 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047329273 = queryNorm
                0.23214069 = fieldWeight in 1451, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1451)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 3.2003 19:27:36
  5. Crestani, F.; Du, H.: Written versus spoken queries : a qualitative and quantitative comparative analysis (2006) 0.00
    0.004809347 = product of:
      0.019237388 = sum of:
        0.019237388 = product of:
          0.038474776 = sum of:
            0.038474776 = weight(_text_:22 in 5047) [ClassicSimilarity], result of:
              0.038474776 = score(doc=5047,freq=2.0), product of:
                0.16573904 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047329273 = queryNorm
                0.23214069 = fieldWeight in 5047, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5047)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    5. 6.2006 11:22:23