Search (1 results, page 1 of 1)

  • × author_ss:"He, Y."
  • × theme_ss:"Inhaltsanalyse"
  1. Saif, H.; He, Y.; Fernandez, M.; Alani, H.: Contextual semantics for sentiment analysis of Twitter (2016) 0.01
    0.0057562785 = product of:
      0.017268835 = sum of:
        0.017268835 = weight(_text_:of in 2667) [ClassicSimilarity], result of:
          0.017268835 = score(doc=2667,freq=12.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.21160212 = fieldWeight in 2667, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2667)
      0.33333334 = coord(1/3)
    
    Abstract
    Sentiment analysis on Twitter has attracted much attention recently due to its wide applications in both, commercial and public sectors. In this paper we present SentiCircles, a lexicon-based approach for sentiment analysis on Twitter. Different from typical lexicon-based approaches, which offer a fixed and static prior sentiment polarities of words regardless of their context, SentiCircles takes into account the co-occurrence patterns of words in different contexts in tweets to capture their semantics and update their pre-assigned strength and polarity in sentiment lexicons accordingly. Our approach allows for the detection of sentiment at both entity-level and tweet-level. We evaluate our proposed approach on three Twitter datasets using three different sentiment lexicons to derive word prior sentiments. Results show that our approach significantly outperforms the baselines in accuracy and F-measure for entity-level subjectivity (neutral vs. polar) and polarity (positive vs. negative) detections. For tweet-level sentiment detection, our approach performs better than the state-of-the-art SentiStrength by 4-5% in accuracy in two datasets, but falls marginally behind by 1% in F-measure in the third dataset.