Search (97 results, page 1 of 5)

  • × theme_ss:"Automatisches Abstracting"
  1. Oh, H.; Nam, S.; Zhu, Y.: Structured abstract summarization of scientific articles : summarization using full-text section information (2023) 0.06
    0.055108376 = product of:
      0.08266256 = sum of:
        0.027304424 = weight(_text_:of in 889) [ClassicSimilarity], result of:
          0.027304424 = score(doc=889,freq=30.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.33457235 = fieldWeight in 889, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=889)
        0.055358134 = sum of:
          0.020004123 = weight(_text_:science in 889) [ClassicSimilarity], result of:
            0.020004123 = score(doc=889,freq=2.0), product of:
              0.13747036 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.05218836 = queryNorm
              0.1455159 = fieldWeight in 889, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0390625 = fieldNorm(doc=889)
          0.03535401 = weight(_text_:22 in 889) [ClassicSimilarity], result of:
            0.03535401 = score(doc=889,freq=2.0), product of:
              0.18275474 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05218836 = queryNorm
              0.19345059 = fieldWeight in 889, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=889)
      0.6666667 = coord(2/3)
    
    Abstract
    The automatic summarization of scientific articles differs from other text genres because of the structured format and longer text length. Previous approaches have focused on tackling the lengthy nature of scientific articles, aiming to improve the computational efficiency of summarizing long text using a flat, unstructured abstract. However, the structured format of scientific articles and characteristics of each section have not been fully explored, despite their importance. The lack of a sufficient investigation and discussion of various characteristics for each section and their influence on summarization results has hindered the practical use of automatic summarization for scientific articles. To provide a balanced abstract proportionally emphasizing each section of a scientific article, the community introduced the structured abstract, an abstract with distinct, labeled sections. Using this information, in this study, we aim to understand tasks ranging from data preparation to model evaluation from diverse viewpoints. Specifically, we provide a preprocessed large-scale dataset and propose a summarization method applying the introduction, methods, results, and discussion (IMRaD) format reflecting the characteristics of each section. We also discuss the objective benchmarks and perspectives of state-of-the-art algorithms and present the challenges and research directions in this area.
    Date
    22. 1.2023 18:57:12
    Source
    Journal of the Association for Information Science and Technology. 74(2023) no.2, S.234-248
  2. Jiang, Y.; Meng, R.; Huang, Y.; Lu, W.; Liu, J.: Generating keyphrases for readers : a controllable keyphrase generation framework (2023) 0.05
    0.054864388 = product of:
      0.08229658 = sum of:
        0.018652473 = weight(_text_:of in 1012) [ClassicSimilarity], result of:
          0.018652473 = score(doc=1012,freq=14.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.22855641 = fieldWeight in 1012, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1012)
        0.06364411 = sum of:
          0.028290104 = weight(_text_:science in 1012) [ClassicSimilarity], result of:
            0.028290104 = score(doc=1012,freq=4.0), product of:
              0.13747036 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.05218836 = queryNorm
              0.20579056 = fieldWeight in 1012, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1012)
          0.03535401 = weight(_text_:22 in 1012) [ClassicSimilarity], result of:
            0.03535401 = score(doc=1012,freq=2.0), product of:
              0.18275474 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05218836 = queryNorm
              0.19345059 = fieldWeight in 1012, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1012)
      0.6666667 = coord(2/3)
    
    Abstract
    With the wide application of keyphrases in many Information Retrieval (IR) and Natural Language Processing (NLP) tasks, automatic keyphrase prediction has been emerging. However, these statistically important phrases are contributing increasingly less to the related tasks because the end-to-end learning mechanism enables models to learn the important semantic information of the text directly. Similarly, keyphrases are of little help for readers to quickly grasp the paper's main idea because the relationship between the keyphrase and the paper is not explicit to readers. Therefore, we propose to generate keyphrases with specific functions for readers to bridge the semantic gap between them and the information producers, and verify the effectiveness of the keyphrase function for assisting users' comprehension with a user experiment. A controllable keyphrase generation framework (the CKPG) that uses the keyphrase function as a control code to generate categorized keyphrases is proposed and implemented based on Transformer, BART, and T5, respectively. For the Computer Science domain, the Macro-avgs of , , and on the Paper with Code dataset are up to 0.680, 0.535, and 0.558, respectively. Our experimental results indicate the effectiveness of the CKPG models.
    Date
    22. 6.2023 14:55:20
    Source
    Journal of the Association for Information Science and Technology. 74(2023) no.7, S.759-774
  3. Kim, H.H.; Kim, Y.H.: Generic speech summarization of transcribed lecture videos : using tags and their semantic relations (2016) 0.05
    0.051005363 = product of:
      0.076508045 = sum of:
        0.021149913 = weight(_text_:of in 2640) [ClassicSimilarity], result of:
          0.021149913 = score(doc=2640,freq=18.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.25915858 = fieldWeight in 2640, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2640)
        0.055358134 = sum of:
          0.020004123 = weight(_text_:science in 2640) [ClassicSimilarity], result of:
            0.020004123 = score(doc=2640,freq=2.0), product of:
              0.13747036 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.05218836 = queryNorm
              0.1455159 = fieldWeight in 2640, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2640)
          0.03535401 = weight(_text_:22 in 2640) [ClassicSimilarity], result of:
            0.03535401 = score(doc=2640,freq=2.0), product of:
              0.18275474 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05218836 = queryNorm
              0.19345059 = fieldWeight in 2640, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2640)
      0.6666667 = coord(2/3)
    
    Abstract
    We propose a tag-based framework that simulates human abstractors' ability to select significant sentences based on key concepts in a sentence as well as the semantic relations between key concepts to create generic summaries of transcribed lecture videos. The proposed extractive summarization method uses tags (viewer- and author-assigned terms) as key concepts. Our method employs Flickr tag clusters and WordNet synonyms to expand tags and detect the semantic relations between tags. This method helps select sentences that have a greater number of semantically related key concepts. To investigate the effectiveness and uniqueness of the proposed method, we compare it with an existing technique, latent semantic analysis (LSA), using intrinsic and extrinsic evaluations. The results of intrinsic evaluation show that the tag-based method is as or more effective than the LSA method. We also observe that in the extrinsic evaluation, the grand mean accuracy score of the tag-based method is higher than that of the LSA method, with a statistically significant difference. Elaborating on our results, we discuss the theoretical and practical implications of our findings for speech video summarization and retrieval.
    Date
    22. 1.2016 12:29:41
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.2, S.366-379
  4. Wu, Y.-f.B.; Li, Q.; Bot, R.S.; Chen, X.: Finding nuggets in documents : a machine learning approach (2006) 0.05
    0.04934041 = product of:
      0.07401061 = sum of:
        0.018652473 = weight(_text_:of in 5290) [ClassicSimilarity], result of:
          0.018652473 = score(doc=5290,freq=14.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.22855641 = fieldWeight in 5290, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5290)
        0.055358134 = sum of:
          0.020004123 = weight(_text_:science in 5290) [ClassicSimilarity], result of:
            0.020004123 = score(doc=5290,freq=2.0), product of:
              0.13747036 = queryWeight, product of:
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.05218836 = queryNorm
              0.1455159 = fieldWeight in 5290, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.6341193 = idf(docFreq=8627, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5290)
          0.03535401 = weight(_text_:22 in 5290) [ClassicSimilarity], result of:
            0.03535401 = score(doc=5290,freq=2.0), product of:
              0.18275474 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05218836 = queryNorm
              0.19345059 = fieldWeight in 5290, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5290)
      0.6666667 = coord(2/3)
    
    Abstract
    Document keyphrases provide a concise summary of a document's content, offering semantic metadata summarizing a document. They can be used in many applications related to knowledge management and text mining, such as automatic text summarization, development of search engines, document clustering, document classification, thesaurus construction, and browsing interfaces. Because only a small portion of documents have keyphrases assigned by authors, and it is time-consuming and costly to manually assign keyphrases to documents, it is necessary to develop an algorithm to automatically generate keyphrases for documents. This paper describes a Keyphrase Identification Program (KIP), which extracts document keyphrases by using prior positive samples of human identified phrases to assign weights to the candidate keyphrases. The logic of our algorithm is: The more keywords a candidate keyphrase contains and the more significant these keywords are, the more likely this candidate phrase is a keyphrase. KIP's learning function can enrich the glossary database by automatically adding new identified keyphrases to the database. KIP's personalization feature will let the user build a glossary database specifically suitable for the area of his/her interest. The evaluation results show that KIP's performance is better than the systems we compared to and that the learning function is effective.
    Date
    22. 7.2006 17:25:48
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.6, S.740-752
  5. Pinto, M.: Engineering the production of meta-information : the abstracting concern (2003) 0.04
    0.037281495 = product of:
      0.05592224 = sum of:
        0.027916465 = weight(_text_:of in 4667) [ClassicSimilarity], result of:
          0.027916465 = score(doc=4667,freq=4.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.34207192 = fieldWeight in 4667, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.109375 = fieldNorm(doc=4667)
        0.028005775 = product of:
          0.05601155 = sum of:
            0.05601155 = weight(_text_:science in 4667) [ClassicSimilarity], result of:
              0.05601155 = score(doc=4667,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.40744454 = fieldWeight in 4667, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4667)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    Journal of information science. 29(2003) no.5, S.405-418
  6. Robin, J.; McKeown, K.: Empirically designing and evaluating a new revision-based model for summary generation (1996) 0.04
    0.037275564 = product of:
      0.055913344 = sum of:
        0.027630134 = weight(_text_:of in 6751) [ClassicSimilarity], result of:
          0.027630134 = score(doc=6751,freq=12.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.33856338 = fieldWeight in 6751, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=6751)
        0.028283209 = product of:
          0.056566417 = sum of:
            0.056566417 = weight(_text_:22 in 6751) [ClassicSimilarity], result of:
              0.056566417 = score(doc=6751,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.30952093 = fieldWeight in 6751, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6751)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Presents a system for summarizing quantitative data in natural language, focusing on the use of a corpus of basketball game summaries, drawn from online news services, to empirically shape the system design and to evaluate the approach. Initial corpus analysis revealed characteristics of textual summaries that challenge the capabilities of current language generation systems. A revision based corpus analysis was used to identify and encode the revision rules of the system. Presents a quantitative evaluation, using several test corpora, to measure the robustness of the new revision based model
    Date
    6. 3.1997 16:22:15
  7. Paice, C.D.: Automatic abstracting (1994) 0.04
    0.036377676 = product of:
      0.05456651 = sum of:
        0.02255991 = weight(_text_:of in 1255) [ClassicSimilarity], result of:
          0.02255991 = score(doc=1255,freq=2.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.27643585 = fieldWeight in 1255, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.125 = fieldNorm(doc=1255)
        0.0320066 = product of:
          0.0640132 = sum of:
            0.0640132 = weight(_text_:science in 1255) [ClassicSimilarity], result of:
              0.0640132 = score(doc=1255,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.4656509 = fieldWeight in 1255, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.125 = fieldNorm(doc=1255)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    Encyclopedia of library and information science. Vol.53, [=Suppl.16]
  8. Goh, A.; Hui, S.C.: TES: a text extraction system (1996) 0.04
    0.035670638 = product of:
      0.053505957 = sum of:
        0.025222747 = weight(_text_:of in 6599) [ClassicSimilarity], result of:
          0.025222747 = score(doc=6599,freq=10.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.3090647 = fieldWeight in 6599, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=6599)
        0.028283209 = product of:
          0.056566417 = sum of:
            0.056566417 = weight(_text_:22 in 6599) [ClassicSimilarity], result of:
              0.056566417 = score(doc=6599,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.30952093 = fieldWeight in 6599, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6599)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    With the onset of the information explosion arising from digital libraries and access to a wealth of information through the Internet, the need to efficiently determine the relevance of a document becomes even more urgent. Describes a text extraction system (TES), which retrieves a set of sentences from a document to form an indicative abstract. Such an automated process enables information to be filtered more quickly. Discusses the combination of various text extraction techniques. Compares results with manually produced abstracts
    Date
    26. 2.1997 10:22:43
  9. Jones, P.A.; Bradbeer, P.V.G.: Discovery of optimal weights in a concept selection system (1996) 0.04
    0.035670638 = product of:
      0.053505957 = sum of:
        0.025222747 = weight(_text_:of in 6974) [ClassicSimilarity], result of:
          0.025222747 = score(doc=6974,freq=10.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.3090647 = fieldWeight in 6974, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=6974)
        0.028283209 = product of:
          0.056566417 = sum of:
            0.056566417 = weight(_text_:22 in 6974) [ClassicSimilarity], result of:
              0.056566417 = score(doc=6974,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.30952093 = fieldWeight in 6974, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6974)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Describes the application of weighting strategies to model uncertainties and probabilities in automatic abstracting systems, particularly in the concept selection phase. The weights were originally assigned in an ad hoc manner and were then refined by manual analysis of the results. The new method attempts to derive a more systematic methods and performs this using a genetic algorithm
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon
  10. Endres-Niggemeyer, B.; Neugebauer, E.: Professional summarizing : no cognitive simulation without observation (1998) 0.03
    0.031938553 = product of:
      0.04790783 = sum of:
        0.03190453 = weight(_text_:of in 3243) [ClassicSimilarity], result of:
          0.03190453 = score(doc=3243,freq=16.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.39093933 = fieldWeight in 3243, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=3243)
        0.0160033 = product of:
          0.0320066 = sum of:
            0.0320066 = weight(_text_:science in 3243) [ClassicSimilarity], result of:
              0.0320066 = score(doc=3243,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23282544 = fieldWeight in 3243, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3243)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Develops a cognitive model of expert summarization, using 54 working processes of 6 experts recorded by thinking-alound protocols. It comprises up to 140 working steps. Components of the model are a toolbox of empirically founded strategies, principles of process organization, and interpreted working steps where the interaction of cognitive strategies can be investigated. In the computerized simulation the SimSum (Simulation of Summarizing) system, cognitive strategies are represented by object-oriented agents grouped around dedicated blckboards
    Source
    Journal of the American Society for Information Science. 49(1998) no.6, S.486-506
  11. Vanderwende, L.; Suzuki, H.; Brockett, J.M.; Nenkova, A.: Beyond SumBasic : task-focused summarization with sentence simplification and lexical expansion (2007) 0.03
    0.031061536 = product of:
      0.046592303 = sum of:
        0.025379896 = weight(_text_:of in 948) [ClassicSimilarity], result of:
          0.025379896 = score(doc=948,freq=18.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.3109903 = fieldWeight in 948, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=948)
        0.021212406 = product of:
          0.042424813 = sum of:
            0.042424813 = weight(_text_:22 in 948) [ClassicSimilarity], result of:
              0.042424813 = score(doc=948,freq=2.0), product of:
                0.18275474 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23214069 = fieldWeight in 948, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=948)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In recent years, there has been increased interest in topic-focused multi-document summarization. In this task, automatic summaries are produced in response to a specific information request, or topic, stated by the user. The system we have designed to accomplish this task comprises four main components: a generic extractive summarization system, a topic-focusing component, sentence simplification, and lexical expansion of topic words. This paper details each of these components, together with experiments designed to quantify their individual contributions. We include an analysis of our results on two large datasets commonly used to evaluate task-focused summarization, the DUC2005 and DUC2006 datasets, using automatic metrics. Additionally, we include an analysis of our results on the DUC2006 task according to human evaluation metrics. In the human evaluation of system summaries compared to human summaries, i.e., the Pyramid method, our system ranked first out of 22 systems in terms of overall mean Pyramid score; and in the human evaluation of summary responsiveness to the topic, our system ranked third out of 35 systems.
  12. Craven, T.C.: ¬A computer-aided abstracting tool kit (1993) 0.03
    0.030564837 = product of:
      0.045847256 = sum of:
        0.029843956 = weight(_text_:of in 6506) [ClassicSimilarity], result of:
          0.029843956 = score(doc=6506,freq=14.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.36569026 = fieldWeight in 6506, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=6506)
        0.0160033 = product of:
          0.0320066 = sum of:
            0.0320066 = weight(_text_:science in 6506) [ClassicSimilarity], result of:
              0.0320066 = score(doc=6506,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23282544 = fieldWeight in 6506, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6506)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Describes the abstracting assistance features being prototyped in the TEXNET text network management system. Sentence weighting methods include: weithing negatively or positively on the stems in a selected passage; weighting on general lists of cue words, adjusting weights of selected segments; and weighting of occurrence of frequent stems. The user may adjust a number of parameters: the minimum strength of extracts; the threshold for frequent word/stems and the amount sentence weight is to be adjusted for each weighting type
    Source
    Canadian journal of information and library science. 18(1993) no.2, S.20-31
  13. Atanassova, I.; Bertin, M.; Larivière, V.: On the composition of scientific abstracts (2016) 0.03
    0.02920836 = product of:
      0.04381254 = sum of:
        0.033810478 = weight(_text_:of in 3028) [ClassicSimilarity], result of:
          0.033810478 = score(doc=3028,freq=46.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.41429368 = fieldWeight in 3028, product of:
              6.78233 = tf(freq=46.0), with freq of:
                46.0 = termFreq=46.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3028)
        0.010002062 = product of:
          0.020004123 = sum of:
            0.020004123 = weight(_text_:science in 3028) [ClassicSimilarity], result of:
              0.020004123 = score(doc=3028,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.1455159 = fieldWeight in 3028, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3028)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - Scientific abstracts reproduce only part of the information and the complexity of argumentation in a scientific article. The purpose of this paper provides a first analysis of the similarity between the text of scientific abstracts and the body of articles, using sentences as the basic textual unit. It contributes to the understanding of the structure of abstracts. Design/methodology/approach - Using sentence-based similarity metrics, the authors quantify the phenomenon of text re-use in abstracts and examine the positions of the sentences that are similar to sentences in abstracts in the introduction, methods, results and discussion structure, using a corpus of over 85,000 research articles published in the seven Public Library of Science journals. Findings - The authors provide evidence that 84 percent of abstract have at least one sentence in common with the body of the paper. Studying the distributions of sentences in the body of the articles that are re-used in abstracts, the authors show that there exists a strong relation between the rhetorical structure of articles and the zones that authors re-use when writing abstracts, with sentences mainly coming from the beginning of the introduction and the end of the conclusion. Originality/value - Scientific abstracts contain what is considered by the author(s) as information that best describe documents' content. This is a first study that examines the relation between the contents of abstracts and the rhetorical structure of scientific articles. The work might provide new insight for improving automatic abstracting tools as well as information retrieval approaches, in which text organization and structure are important features.
    Source
    Journal of documentation. 72(2016) no.4, S.636-647
  14. Moens, M.-F.; Uyttendaele, C.; Dumotier, J.: Abstracting of legal cases : the potential of clustering based on the selection of representative objects (1999) 0.03
    0.028336879 = product of:
      0.042505316 = sum of:
        0.03050284 = weight(_text_:of in 2944) [ClassicSimilarity], result of:
          0.03050284 = score(doc=2944,freq=26.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.37376386 = fieldWeight in 2944, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2944)
        0.012002475 = product of:
          0.02400495 = sum of:
            0.02400495 = weight(_text_:science in 2944) [ClassicSimilarity], result of:
              0.02400495 = score(doc=2944,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.17461908 = fieldWeight in 2944, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2944)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The SALOMON project automatically summarizes Belgian criminal cases in order to improve access to the large number of existing and future court decisions. SALOMON extracts text units from the case text to form a case summary. Such a case summary facilitates the rapid determination of the relevance of the case or may be employed in text search. an important part of the research concerns the development of techniques for automatic recognition of representative text paragraphs (or sentences) in texts of unrestricted domains. these techniques are employed to eliminate redundant material in the case texts, and to identify informative text paragraphs which are relevant to include in the case summary. An evaluation of a test set of 700 criminal cases demonstrates that the algorithms have an application potential for automatic indexing, abstracting, and text linkage
    Source
    Journal of the American Society for Information Science. 50(1999) no.2, S.151-161
  15. Craven, T.C.: ¬A phrase flipper for the assistance of writers of abstracts and other text (1995) 0.03
    0.02748403 = product of:
      0.041226044 = sum of:
        0.025222747 = weight(_text_:of in 4897) [ClassicSimilarity], result of:
          0.025222747 = score(doc=4897,freq=10.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.3090647 = fieldWeight in 4897, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=4897)
        0.0160033 = product of:
          0.0320066 = sum of:
            0.0320066 = weight(_text_:science in 4897) [ClassicSimilarity], result of:
              0.0320066 = score(doc=4897,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23282544 = fieldWeight in 4897, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4897)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Describes computerized tools for computer assisted abstracting. FlipPhr is a Microsoft Windows application program that rearranges (flips) phrases or other expressions in accordance with rules in a grammar. The flipping may be invoked with a single keystroke from within various Windows application programs that allow cutting and pasting of text. The user may modify the grammar to provide for different kinds of flipping
    Source
    Canadian journal of information and library science. 20(1995) nos.3/4, S.41-49
  16. Yang, C.C.; Wang, F.L.: Hierarchical summarization of large documents (2008) 0.03
    0.027015757 = product of:
      0.040523633 = sum of:
        0.02637858 = weight(_text_:of in 1719) [ClassicSimilarity], result of:
          0.02637858 = score(doc=1719,freq=28.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.32322758 = fieldWeight in 1719, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1719)
        0.014145052 = product of:
          0.028290104 = sum of:
            0.028290104 = weight(_text_:science in 1719) [ClassicSimilarity], result of:
              0.028290104 = score(doc=1719,freq=4.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.20579056 = fieldWeight in 1719, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1719)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Many automatic text summarization models have been developed in the last decades. Related research in information science has shown that human abstractors extract sentences for summaries based on the hierarchical structure of documents; however, the existing automatic summarization models do not take into account the human abstractor's behavior of sentence extraction and only consider the document as a sequence of sentences during the process of extraction of sentences as a summary. In general, a document exhibits a well-defined hierarchical structure that can be described as fractals - mathematical objects with a high degree of redundancy. In this article, we introduce the fractal summarization model based on the fractal theory. The important information is captured from the source document by exploring the hierarchical structure and salient features of the document. A condensed version of the document that is informatively close to the source document is produced iteratively using the contractive transformation in the fractal theory. The fractal summarization model is the first attempt to apply fractal theory to document summarization. It significantly improves the divergence of information coverage of summary and the precision of summary. User evaluations have been conducted. Results have indicated that fractal summarization is promising and outperforms current summarization techniques that do not consider the hierarchical structure of documents.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.6, S.887-902
  17. Kim, H.H.; Kim, Y.H.: ERP/MMR algorithm for classifying topic-relevant and topic-irrelevant visual shots of documentary videos (2019) 0.03
    0.027015757 = product of:
      0.040523633 = sum of:
        0.02637858 = weight(_text_:of in 5358) [ClassicSimilarity], result of:
          0.02637858 = score(doc=5358,freq=28.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.32322758 = fieldWeight in 5358, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5358)
        0.014145052 = product of:
          0.028290104 = sum of:
            0.028290104 = weight(_text_:science in 5358) [ClassicSimilarity], result of:
              0.028290104 = score(doc=5358,freq=4.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.20579056 = fieldWeight in 5358, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5358)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    We propose and evaluate a video summarization method based on a topic relevance model, a maximal marginal relevance (MMR), and discriminant analysis to generate a semantically meaningful video skim. The topic relevance model uses event-related potential (ERP) components to describe the process of topic relevance judgment. More specifically, the topic relevance model indicates that N400 and P600, which have been successfully applied to the mismatch process of a stimulus and the discourse-internal reorganization and integration process of a stimulus, respectively, are used for the topic mismatch process of a topic-irrelevant video shot and the topic formation process of a topic-relevant video shot. To evaluate our proposed ERP/MMR-based method, we compared the video skims generated by the ERP/MMR-based, ERP-based, and shot boundary detection (SBD) methods with ground truth skims. The results showed that at a significance level of 0.05, the ROUGE-1 scores of the ERP/MMR method are statistically higher than those of the SBD method, and the diversity scores of the ERP/MMR method are statistically higher than those of the ERP method. This study suggested that the proposed method may be applied to the construction of a video skim without operational intervention, such as the insertion of a black screen between video shots.
    Footnote
    Beitrag in einem 'Special issue on neuro-information science'.
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.9, S.931-941
  18. Liu, J.; Wu, Y.; Zhou, L.: ¬A hybrid method for abstracting newspaper articles (1999) 0.02
    0.023693837 = product of:
      0.035540756 = sum of:
        0.019537456 = weight(_text_:of in 4059) [ClassicSimilarity], result of:
          0.019537456 = score(doc=4059,freq=6.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.23940048 = fieldWeight in 4059, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=4059)
        0.0160033 = product of:
          0.0320066 = sum of:
            0.0320066 = weight(_text_:science in 4059) [ClassicSimilarity], result of:
              0.0320066 = score(doc=4059,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.23282544 = fieldWeight in 4059, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4059)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper introduces a hybrid method for abstracting Chinese text. It integrates the statistical approach with language understanding. Some linguistics heuristics and segmentation are also incorporated into the abstracting process. The prototype system is of a multipurpose type catering for various users with different reqirements. Initial responses show that the proposed method contributes much to the flexibility and accuracy of the automatic Chinese abstracting system. In practice, the present work provides a path to developing an intelligent Chinese system for automating the information
    Source
    Journal of the American Society for Information Science. 50(1999) no.13, S.1234-1245
  19. Ou, S.; Khoo, S.G.; Goh, D.H.: Automatic multidocument summarization of research abstracts : design and user evaluation (2007) 0.02
    0.023614064 = product of:
      0.035421096 = sum of:
        0.025419034 = weight(_text_:of in 522) [ClassicSimilarity], result of:
          0.025419034 = score(doc=522,freq=26.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.31146988 = fieldWeight in 522, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=522)
        0.010002062 = product of:
          0.020004123 = sum of:
            0.020004123 = weight(_text_:science in 522) [ClassicSimilarity], result of:
              0.020004123 = score(doc=522,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.1455159 = fieldWeight in 522, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=522)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The purpose of this study was to develop a method for automatic construction of multidocument summaries of sets of research abstracts that may be retrieved by a digital library or search engine in response to a user query. Sociology dissertation abstracts were selected as the sample domain in this study. A variable-based framework was proposed for integrating and organizing research concepts and relationships as well as research methods and contextual relations extracted from different dissertation abstracts. Based on the framework, a new summarization method was developed, which parses the discourse structure of abstracts, extracts research concepts and relationships, integrates the information across different abstracts, and organizes and presents them in a Web-based interface. The focus of this article is on the user evaluation that was performed to assess the overall quality and usefulness of the summaries. Two types of variable-based summaries generated using the summarization method-with or without the use of a taxonomy-were compared against a sentence-based summary that lists only the research-objective sentences extracted from each abstract and another sentence-based summary generated using the MEAD system that extracts important sentences. The evaluation results indicate that the majority of sociological researchers (70%) and general users (64%) preferred the variable-based summaries generated with the use of the taxonomy.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.10, S.1419-1435
  20. Yulianti, E.; Huspi, S.; Sanderson, M.: Tweet-biased summarization (2016) 0.02
    0.022949254 = product of:
      0.03442388 = sum of:
        0.02442182 = weight(_text_:of in 2926) [ClassicSimilarity], result of:
          0.02442182 = score(doc=2926,freq=24.0), product of:
            0.08160993 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.05218836 = queryNorm
            0.2992506 = fieldWeight in 2926, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2926)
        0.010002062 = product of:
          0.020004123 = sum of:
            0.020004123 = weight(_text_:science in 2926) [ClassicSimilarity], result of:
              0.020004123 = score(doc=2926,freq=2.0), product of:
                0.13747036 = queryWeight, product of:
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.05218836 = queryNorm
                0.1455159 = fieldWeight in 2926, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.6341193 = idf(docFreq=8627, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2926)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    We examined whether the microblog comments given by people after reading a web document could be exploited to improve the accuracy of a web document summarization system. We examined the effect of social information (i.e., tweets) on the accuracy of the generated summaries by comparing the user preference for TBS (tweet-biased summary) with GS (generic summary). The result of crowdsourcing-based evaluation shows that the user preference for TBS was significantly higher than GS. We also took random samples of the documents to see the performance of summaries in a traditional evaluation using ROUGE, which, in general, TBS was also shown to be better than GS. We further analyzed the influence of the number of tweets pointed to a web document on summarization accuracy, finding a positive moderate correlation between the number of tweets pointed to a web document and the performance of generated TBS as measured by user preference. The results show that incorporating social information into the summary generation process can improve the accuracy of summary. The reason for people choosing one summary over another in a crowdsourcing-based evaluation is also presented in this article.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.6, S.1289-1300

Years

Languages

  • e 93
  • chi 2
  • d 2
  • More… Less…

Types

  • a 93
  • m 3
  • r 1
  • More… Less…