Search (23 results, page 2 of 2)

  • × author_ss:"Bar-Ilan, J."
  1. Shema, H.; Bar-Ilan, J.; Thelwall, M.: Do blog citations correlate with a higher number of future citations? : Research blogs as a potential source for alternative metrics (2014) 0.01
    0.0053345575 = product of:
      0.016003672 = sum of:
        0.016003672 = weight(_text_:on in 1258) [ClassicSimilarity], result of:
          0.016003672 = score(doc=1258,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 1258, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1258)
      0.33333334 = coord(1/3)
    
    Abstract
    Journal-based citations are an important source of data for impact indices. However, the impact of journal articles extends beyond formal scholarly discourse. Measuring online scholarly impact calls for new indices, complementary to the older ones. This article examines a possible alternative metric source, blog posts aggregated at ResearchBlogging.org, which discuss peer-reviewed articles and provide full bibliographic references. Articles reviewed in these blogs therefore receive "blog citations." We hypothesized that articles receiving blog citations close to their publication time receive more journal citations later than the articles in the same journal published in the same year that did not receive such blog citations. Statistically significant evidence for articles published in 2009 and 2010 support this hypothesis for seven of 12 journals (58%) in 2009 and 13 of 19 journals (68%) in 2010. We suggest, based on these results, that blog citations can be used as an alternative metric source.
  2. Bar-Ilan, J.; Levene, M.; Mat-Hassan, M.: Methods for evaluating dynamic changes in search engine rankings : a case study (2006) 0.01
    0.005029469 = product of:
      0.015088406 = sum of:
        0.015088406 = weight(_text_:on in 616) [ClassicSimilarity], result of:
          0.015088406 = score(doc=616,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.13746344 = fieldWeight in 616, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.03125 = fieldNorm(doc=616)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The objective of this paper is to characterize the changes in the rankings of the top ten results of major search engines over time and to compare the rankings between these engines. Design/methodology/approach - The papers compare rankings of the top-ten results of the search engines Google and AlltheWeb on ten identical queries over a period of three weeks. Only the top-ten results were considered, since users do not normally inspect more than the first results page returned by a search engine. The experiment was repeated twice, in October 2003 and in January 2004, in order to assess changes to the top-ten results of some of the queries during the three months interval. In order to assess the changes in the rankings, three measures were computed for each data collection point and each search engine. Findings - The findings in this paper show that the rankings of AlltheWeb were highly stable over each period, while the rankings of Google underwent constant yet minor changes, with occasional major ones. Changes over time can be explained by the dynamic nature of the web or by fluctuations in the search engines' indexes. The top-ten results of the two search engines had surprisingly low overlap. With such small overlap, the task of comparing the rankings of the two engines becomes extremely challenging. Originality/value - The paper shows that because of the abundance of information on the web, ranking search results is of extreme importance. The paper compares several measures for computing the similarity between rankings of search tools, and shows that none of the measures is fully satisfactory as a standalone measure. It also demonstrates the apparent differences in the ranking algorithms of two widely used search engines.
  3. Bar-Ilan, J.; Keenoy, K.; Levene, M.; Yaari, E.: Presentation bias is significant in determining user preference for search results : a user study (2009) 0.00
    0.0044454644 = product of:
      0.013336393 = sum of:
        0.013336393 = weight(_text_:on in 2703) [ClassicSimilarity], result of:
          0.013336393 = score(doc=2703,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.121501654 = fieldWeight in 2703, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2703)
      0.33333334 = coord(1/3)
    
    Abstract
    We describe the results of an experiment designed to study user preferences for different orderings of search results from three major search engines. In the experiment, 65 users were asked to choose the best ordering from two different orderings of the same set of search results: Each pair consisted of the search engine's original top-10 ordering and a synthetic ordering created from the same top-10 results retrieved by the search engine. This process was repeated for 12 queries and nine different synthetic orderings. The results show that there is a slight overall preference for the search engines' original orderings, but the preference is rarely significant. Users' choice of the best result from each of the different orderings indicates that placement on the page (i.e., whether the result appears near the top) is the most important factor used in determining the quality of the result, not the actual content displayed in the top-10 snippets. In addition to the placement bias, we detected a small bias due to the reputation of the sites appearing in the search results.