Search (25 results, page 1 of 2)

  • × author_ss:"Gnoli, C."
  1. Gnoli, C.: Classifying phenomena : part 4: themes and rhemes (2018) 0.03
    0.028611436 = product of:
      0.042917155 = sum of:
        0.02263261 = weight(_text_:on in 4152) [ClassicSimilarity], result of:
          0.02263261 = score(doc=4152,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 4152, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=4152)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 4152) [ClassicSimilarity], result of:
              0.040569093 = score(doc=4152,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 4152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4152)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This is the fourth in a series of papers on classification based on phenomena instead of disciplines. Together with types, levels and facets that have been discussed in the previous parts, themes and rhemes are further structural components of such a classification. In a statement or in a longer document, a base theme and several particular themes can be identified. Base theme should be cited first in a classmark, followed by particular themes, each with its own facets. In some cases, rhemes can also be expressed, that is new information provided about a theme, converting an abstract statement ("wolves, affected by cervids") into a claim that some thing actually occurs ("wolves are affected by cervids"). In the Integrative Levels Classification rhemes can be expressed by special deictic classes, including those for actual specimens, anaphoras, unknown values, conjunctions and spans, whole universe, anthropocentric favoured classes, and favoured host classes. These features, together with rules for pronounciation, make a classification of phenomena a true language, that may be suitable for many uses.
    Date
    17. 2.2018 18:22:25
  2. Gnoli, C.: Boundaries and overlaps of disciplines in Bloch's methodology of historical knowledge (2014) 0.02
    0.024192145 = product of:
      0.036288217 = sum of:
        0.016003672 = weight(_text_:on in 1414) [ClassicSimilarity], result of:
          0.016003672 = score(doc=1414,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 1414, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1414)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 1414) [ClassicSimilarity], result of:
              0.040569093 = score(doc=1414,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 1414, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1414)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Marc Bloch's famous methodological essay, The Historian's Craft, contains many relevant considerations on knowledge organization. These have been selected and grouped into four main themes: terminology problems in history; principles for the organization of historical knowledge, with special reference to the genetic principle; sources of historical information, to be found not only in archives but also in very different media and contexts; and the nature and boundaries of history as a discipline. Analysis of them shows that knowledge organization is an important part of historians' work, and suggests that it can be especially fruitful when a cross-medial, interdisciplinary approach is adopted.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  3. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 3739) [ClassicSimilarity], result of:
          0.01886051 = score(doc=3739,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 3739, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3739)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
              0.03380758 = score(doc=3739,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 3739, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3739)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The Integrative Level Classification (ILC) research project is experimenting with a knowledge organization system based on phenomena rather than disciplines. Each phenomenon has a constant notation, which can be combined with that of any other phenomenon in a freely faceted structure. Citation order can express differential focality of the facets. Very specific subjects can have long classmarks, although their complexity is reduced by various devices. Freely faceted classification is being tested by indexing a corpus of about 3300 papers in the interdisciplinary domain of bioacoustics. The subjects of these papers often include phenomena from a wide variety of integrative levels (mechanical waves, animals, behaviour, vessels, fishing, law, ...) as well as information about the methods of study, as predicted in the León Manifesto. The archive is recorded in a MySQL database, and can be fed and searched through PHP Web interfaces. Indexer's work is made easier by mechanisms that suggest possible classes on the basis of matching title words with terms in the ILC schedules, and synthesize automatically the verbal caption corresponding to the classmark being edited. Users can search the archive by selecting and combining values in each facet. Search refinement should be improved, especially for the cases where no record, or too many records, match the faceted query. However, experience is being gained progressively, showing that freely faceted classification by phenomena, theories, and methods is feasible and successfully working.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  4. Gnoli, C.: Classification transcends library business : the case of BiblioPhil (2010) 0.02
    0.020160122 = product of:
      0.030240182 = sum of:
        0.013336393 = weight(_text_:on in 3698) [ClassicSimilarity], result of:
          0.013336393 = score(doc=3698,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.121501654 = fieldWeight in 3698, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3698)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 3698) [ClassicSimilarity], result of:
              0.03380758 = score(doc=3698,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 3698, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3698)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Although bibliographic classifications usually adopt a perspective different from that of object classifications, the two have obvious relationships. These become especially relevant when users are looking for knowledge scattered in a wide variety of forms and media. This is an increasingly common situation, as library catalogues now coexist in the global digital environment with catalogues of archives, of museums, of commercial products, and many other information resources. In order to make the subject content of all these resources searchable, a broader conception of classification is needed, that can be applied to an knowledge item, rather than only bibliographic materials. To illustrate this we take an example of the research on bagpipes in Northern Italian folklore. For this kind of research, the most effective search strategy is a cross-media one, looking for many different knowledge sources such as published documents, police archives, painting details, museum specimens, organizations devoted to related subjects. To provide satisfying results for this kind of search, the traditional disciplinary approach to classification is not sufficient. Tools are needed in which knowledge items dealing with a phenomenon of interest can be retrieved independently from the other topics with which it is combined, the disciplinary context, and the medium where it occurs. This can be made possible if the basic units of classification are taken to be the phenomena treated, as recommended in the León Manifesto, rather than disciplines or other aspect features. The concept of bagpipes should be retrievable and browsable in any combination with other phenomena, disciplines, media etc. Examples are given of information sources that could be managed by this freely-faceted technique of classification.
    Date
    22. 7.2010 20:40:08
  5. Gnoli, C.: Animals belonging to the emperor : enabling viewpoint warrant in classification (2011) 0.01
    0.012573673 = product of:
      0.03772102 = sum of:
        0.03772102 = weight(_text_:on in 1803) [ClassicSimilarity], result of:
          0.03772102 = score(doc=1803,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.3436586 = fieldWeight in 1803, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.078125 = fieldNorm(doc=1803)
      0.33333334 = coord(1/3)
    
    Series
    IFLA series on bibliographic control; vol. 42
    Source
    Subject access: preparing for the future. Conference on August 20 - 21, 2009 in Florence, the IFLA Classification and Indexing Section sponsored an IFLA satellite conference entitled "Looking at the Past and Preparing for the Future". Eds.: P. Landry et al
  6. Gnoli, C.; Bosch, M.; Mazzocchi, F.: ¬A new relationship for multidisciplinary knowledge organization systems : dependence (2007) 0.01
    0.011761595 = product of:
      0.035284784 = sum of:
        0.035284784 = weight(_text_:on in 1095) [ClassicSimilarity], result of:
          0.035284784 = score(doc=1095,freq=14.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.3214632 = fieldWeight in 1095, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1095)
      0.33333334 = coord(1/3)
    
    Abstract
    Most existing knowledge organization systems (KOS) are based on disciplines. However, as research is increasingly multidisciplinary, scholars need tools allowing them to explore relations between phenomena throughout the whole spectrum of knowledge. We focus on the dependence relationship, holding between one phenomenon and those at lower integrative levels on which it depends for its existence, like alpinism on mountains, and mountains on rocks. This relationship was first described by D.J. Foskett in the context of CRG's work towards a non-disciplinary scheme. We discuss its possible status and representation in three kinds of KOS: thesauri, classification schemes, and ontologies. In thesaural structures, dependence could be one of the subtypes of associative relationships (RT) which have been wished to enrich their semantic functions. In classification, it could act together with hierarchy as a structuring principle, providing a way of connecting and sorting main classes based on integrative levels. In ontologies, it could be defined as a dependsOn direct slot, expressing the fact that through it a class does not inherit all properties of the other class on which it depends. We argue that providing search interfaces with cross-disciplinary links of this kind can give users more adequate tools to examine the recorded knowledge through creative paths overcoming some limitations of its canonical segmentation into disciplines.
  7. Gnoli, C.: Workshop on Levels of reality as a KO paradigm : levels, types, facets: three structural principles for KO (2010) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 3524) [ClassicSimilarity], result of:
          0.02263261 = score(doc=3524,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 3524, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3524)
      0.33333334 = coord(1/3)
    
    Abstract
    Three major principles in the structure of knowledge organization systems are identified and discussed: hierarchical trees of types, sets of facets conforming to general categories, and series of levels of reality. Each principle can be present at various degrees in different systems. The three principles can interact between them in various ways, depending on priority choices in system construction. Examples are reviewed of different priority options adopted in classifications and thesauri, both special and general, and their effects are critically examined. It is found that levels of reality, although less often explicitly acknowledged than other principles, contribute an important tool for knowledge organization.
  8. Gnoli, C.; Pusterla, L.; Bendiscioli, A.; Recinella, C.: Classification for collections mapping and query expansion (2016) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 3102) [ClassicSimilarity], result of:
          0.02263261 = score(doc=3102,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 3102, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3102)
      0.33333334 = coord(1/3)
    
    Content
    Vgl.: http://ceur-ws.org/Vol-1676/paper3.pdf. Other workshop material incl. presentations are available on the website < https://at-web1.comp.glam.ac.uk/pages/research/hypermedia/nkos/nkos2016/programme.html>.
    Source
    Proceedings of the 15th European Networked Knowledge Organization Systems Workshop (NKOS 2016) co-located with the 20th International Conference on Theory and Practice of Digital Libraries 2016 (TPDL 2016), Hannover, Germany, September 9, 2016. Edi. by Philipp Mayr et al. [http://ceur-ws.org/Vol-1676/=urn:nbn:de:0074-1676-5]
  9. Gnoli, C.: Classifying phenomena : Part 2: Types and levels (2017) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 3177) [ClassicSimilarity], result of:
          0.02263261 = score(doc=3177,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 3177, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3177)
      0.33333334 = coord(1/3)
    
    Abstract
    After making the case that phenomena can be the primary unit of classification (Part 1), some basic principles to group and sort phenomena are considered. Entities can be grouped together on the basis of both their similarity (morphology) and their common origin (phylogeny). The resulting groups will form the classical hierarchical chains of types and subtypes. At every hierarchical degree, phenomena can form ordered sets (arrays), where their sorting can reflect levels of increasing organization, corresponding to an evolutionary order of appearance (emergence). The theory of levels of reality has been investigated by many philosophers and applied to knowledge organization systems by various authors, which are briefly reviewed. At the broadest degree, it allows to identify some major strata of phenomena (forms, matter, life, minds, societies and culture) in turn divided into layers. A list of twenty-six layers is proposed to form the main classes of the Integrative Levels Classification system. A combination of morphology and phylogeny can determine whether a given phenomenon should be a type of an existing level, or a level on its own.
  10. Lardera, M.; Gnoli, C.; Rolandi, C.; Trzmielewski, M.: Developing SciGator, a DDC-based library browsing tool (2017) 0.01
    0.0067615155 = product of:
      0.020284547 = sum of:
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 4144) [ClassicSimilarity], result of:
              0.040569093 = score(doc=4144,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 4144, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4144)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    Beitrag eines Special Issue: ISKO-Italy: 8' Incontro ISKO Italia, Università di Bologna, 22 maggio 2017, Bologna, Italia.
  11. Gnoli, C.; Santis, R. de; Pusterla, L.: Commerce, see also Rhetoric : cross-discipline relationships as authority data for enhanced retrieval (2015) 0.01
    0.0062868367 = product of:
      0.01886051 = sum of:
        0.01886051 = weight(_text_:on in 2299) [ClassicSimilarity], result of:
          0.01886051 = score(doc=2299,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 2299, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2299)
      0.33333334 = coord(1/3)
    
    Abstract
    Subjects in a classification scheme are often related to other subjects belonging to different hierarchies. This problem was identified already by Hugh of Saint Victor (1096?-1141). Still with present-time bibliographic classifications, a user browsing the class of architecture under the hierarchy of arts may miss relevant items classified in building or in civil engineering under the hierarchy of applied sciences. To face these limitations we have developed SciGator, a browsable interface to explore the collections of all scientific libraries at the University of Pavia. Besides showing subclasses of a given class, the interface points users to related classes in the Dewey Decimal Classification, or in other local schemes, and allows for expanded queries that include them. This is made possible by using a special field for related classes in the database structure which models classification authority data. Ontologically, many relationships between classes in different hierarchies are cases of existential dependence. Dependence can occur between disciplines in such disciplinary classifications as Dewey (e.g. architecture existentially depends on building), or between phenomena in such phenomenon-based classifications as the Integrative Levels Classification (e.g. fishing as a human activity existentially depends on fish as a class of organisms). We provide an example of its representation in OWL and discuss some details of it.
  12. Gnoli, C.: Fundamentos ontológicos de la organización del conocimiento : la teoría de los niveles integrativos aplicada al orden de cita (2011) 0.01
    0.006159817 = product of:
      0.01847945 = sum of:
        0.01847945 = weight(_text_:on in 2659) [ClassicSimilarity], result of:
          0.01847945 = score(doc=2659,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.16835764 = fieldWeight in 2659, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.03125 = fieldNorm(doc=2659)
      0.33333334 = coord(1/3)
    
    Abstract
    The field of knowledge organization (KO) can be described as composed of the four distinct but connected layers of theory, systems, representation, and application. This paper focuses on the relations between KO theory and KO systems. It is acknowledged how the structure of KO systems is the product of a mixture of ontological, epistemological, and pragmatical factors. However, different systems give different priorities to each factor. A more ontologically-oriented approach, though not offering quick solutions for any particular group of users, will produce systems of wide and long-lasting application as they are based on general, shareable principles. I take the case of the ontological theory of integrative levels, which has been considered as a useful source for general classifications for several decades, and is currently implemented in the Integrative Levels Classification system. The theory produces a sequence of main classes modelling a natural order between phenomena. This order has interesting effects also on other features of the system, like the citation order of concepts within compounds. As it has been shown by facet analytical theory, it is useful that citation order follow a principle of inversion, as compared to the order of the same concepts in the schedules. In the light of integrative levels theory, this principle also acquires an ontological meaning: phenomena of lower level should be cited first, as most often they act as specifications of higher-level ones. This ontological principle should be complemented by consideration of the epistemological treatment of phenomena: in case a lower-level phenomenon is the main theme, it can be promoted to the leading position in the compound subject heading. The integration of these principles is believed to produce optimal results in the ordering of knowledge contents.
  13. Gnoli, C.; Mei, H.: Freely faceted classification for Web-based information retrieval (2006) 0.01
    0.0053345575 = product of:
      0.016003672 = sum of:
        0.016003672 = weight(_text_:on in 534) [ClassicSimilarity], result of:
          0.016003672 = score(doc=534,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 534, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
      0.33333334 = coord(1/3)
    
    Abstract
    In free classification, each concept is expressed by a constant notation, and classmarks are formed by free combinations of them, allowing the retrieval of records from a database by searching any of the component concepts. A refinement of free classification is freely faceted classification, where notation can include facets, expressing the kind of relations held between the concepts. The Integrative Level Classification project aims at testing free and freely faceted classification by applying them to small bibliographical samples in various domains. A sample, called the Dandelion Bibliography of Facet Analysis, is described here. Experience was gained using this system to classify 300 specialized papers dealing with facet analysis itself recorded on a MySQL database and building a Web interface exploiting freely faceted notation. The interface is written in PHP and uses string functions to process the queries and to yield relevant results selected and ordered according to the principles of integrative levels.
  14. Gnoli, C.: Categories and facets in integrative levels (2008) 0.01
    0.0053345575 = product of:
      0.016003672 = sum of:
        0.016003672 = weight(_text_:on in 1806) [ClassicSimilarity], result of:
          0.016003672 = score(doc=1806,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 1806, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1806)
      0.33333334 = coord(1/3)
    
    Abstract
    Facets and general categories used in bibliographic classification have been based on a disciplinary organization of knowledge. However, facets and categories of phenomena independent from disciplines can be identified similarly. Phenomena can be classified according to a series of integrative levels (layers), which in turn can be grouped into the major strata of form, matter, life, mind, society and culture, agreeing with Nicolai Hartmann's ontology. Unlike a layer, a stratum is not constituted of elements of the lower ones; rather, it represents the formal pattern of the lower ones, like the horse hoof represents the shape of the steppe. Bibliographic categories can now be seen in the light of level theory: some categories are truly general, while others only appear at a given level, being the realization of a general category in the specific context of the level: these are the facets of that level. In the notation of the Integrative Level Classification project, categories and facets are represented by digits, and displayed in a Web interface with the help of colours.
  15. Gnoli, C.: Notation (2018) 0.01
    0.0053345575 = product of:
      0.016003672 = sum of:
        0.016003672 = weight(_text_:on in 4650) [ClassicSimilarity], result of:
          0.016003672 = score(doc=4650,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 4650, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=4650)
      0.33333334 = coord(1/3)
    
    Abstract
    Notations are systems of symbols that can be combined according to syntactical rules to represent meanings in a specialized domain. In knowledge organization, they are systems of numerals, letters and punctuation marks associated to a concept that mechanically produce helpful sequences of them for arranging books on shelves, browsing subjects in directories and displaying items in catalogues. Most bibliographic classification systems, like Dewey Decimal Classification, use a positional notation allowing for expression of increasingly specific subjects by additional digits. However, some notations like that of Bliss Bibliographic Classification are purely ordinal and do not reflect the hierarchical degree of a subject. Notations can also be expressive of the syntactical structure of compound subjects (common auxiliaries, facets etc.) in various ways. In the digital media, notation can be recorded and managed in databases and exploited to provide appropriate search and display functionalities.
  16. Almeida, P. de; Gnoli, C.: Fiction in a phenomenon-based classification (2021) 0.01
    0.0053345575 = product of:
      0.016003672 = sum of:
        0.016003672 = weight(_text_:on in 712) [ClassicSimilarity], result of:
          0.016003672 = score(doc=712,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 712, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=712)
      0.33333334 = coord(1/3)
    
    Abstract
    In traditional classification, fictional works are indexed only by their form, genre, and language, while their subject content is believed to be irrelevant. However, recent research suggests that this may not be the best approach. We tested indexing of a small sample of selected fictional works by Integrative Levels Classification (ILC2), a freely faceted system based on phenomena instead of disciplines and considered the structure of the resulting classmarks. Issues in the process of subject analysis, such as selection of relevant vs. non-relevant themes and citation order of relevant ones, are identified and discussed. Some phenomena that are covered in scholarly literature can also be identified as relevant themes in fictional literature and expressed in classmarks. This can allow for hybrid search and retrieval systems covering both fiction and nonfiction, which will result in better leveraging of the knowledge contained in fictional works.
  17. Gnoli, C.; Szostak, R.: ¬The Leon Manifesto (2007) 0.00
    0.0044454644 = product of:
      0.013336393 = sum of:
        0.013336393 = weight(_text_:on in 661) [ClassicSimilarity], result of:
          0.013336393 = score(doc=661,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.121501654 = fieldWeight in 661, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=661)
      0.33333334 = coord(1/3)
    
    Abstract
    Some relevant proposals regarding the future of knowledge organization emerged during the 8th conference of the ISKO Spanish chapter, which took place in the beautiful, lively atmosphere of the town of León, between 18 and 20 of April 2007. These proposals are here labeled as "the Leon manifesto", and can be summarized in the following points: - the current trend towards an increasing interdisciplinarity of knowledge calls for essentially new knowledge organization systems (KOS), based on a substantive revision of the principles underlying the traditional discipline-based KOS; - this innovation is not only desirable, but also feasible, and should be implemented by actually developing some new KOS; instead of disciplines, the basic unity of the new KOS should be phenomena of the real world as it is represented in human knowledge; - the new KOS should allow users to shift from one perspective or viewpoint to another, thus reflecting the multidimensional nature of complex thought. In particular, it should allow them to search independently for particular phenomena, for particular theories about phenomena (and about relations between phenomena), and for particular methods of investigation; - the connections between phenomena, those between phenomena and the theories studying them, and those between phenomena and the methods to investigate them, can be expressed and managed by analytico-synthetic techniques already developed in faceted classification.
  18. Gnoli, C.: ISKO News (2007) 0.00
    0.0044454644 = product of:
      0.013336393 = sum of:
        0.013336393 = weight(_text_:on in 1092) [ClassicSimilarity], result of:
          0.013336393 = score(doc=1092,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.121501654 = fieldWeight in 1092, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1092)
      0.33333334 = coord(1/3)
    
    Abstract
    Darin: "However, John Sowa (Vivomind, USA) argued in his speech that the formalized approach, already undertaken by the pioneering project Cyc now having run for 23 years, is not the best way to analyze complex systems. People don't really use axioms in their cognitive processes (even mathematicians first get an idea intuitively, then work on axioms and proofs only at the moment of writing papers). To map between different ontologies, the Vivomind Analogy Engine throws axioms out, and searches instead for analogies in their structures. Analogy is a pragmatic human faculty using a combination of the three logical procedures of deduction, induction, and abduction. Guarino comments that people can communicate without need of axioms as they share a common context, but in order to teach computers how to operate, the requirements are different: he would not trust an airport control system working by analogy."
  19. Gnoli, C.: ¬The meaning of facets in non-disciplinary classifications (2006) 0.00
    0.0044454644 = product of:
      0.013336393 = sum of:
        0.013336393 = weight(_text_:on in 2291) [ClassicSimilarity], result of:
          0.013336393 = score(doc=2291,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.121501654 = fieldWeight in 2291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2291)
      0.33333334 = coord(1/3)
    
    Abstract
    Disciplines are felt by many to be a constraint in classification, though they are a structuring principle of most bibliographic classification schemes. A non-disciplinary approach has been explored by the Classification Research Group, and research in this direction has been resumed recently by the Integrative Level Classification project. This paper focuses on the role and the definition of facets in non-disciplinary schemes. A generalized definition of facets is suggested with reference to predicate logic, allowing for having facets of phenomena as well as facets of disciplines. The general categories under which facets are often subsumed can be related ontologically to the evolutionary sequence of integrative levels. As a facet can be semantically connected with phenomena from any other part of a general scheme, its values can belong to three types, here called extra-defined foci (either special or general), and context-defined foci. Non-disciplinary freely faceted classification is being tested by applying it to little bibliographic samples stored in a MySQL database, and developing Web search interfaces to demonstrate possible uses of the described techniques.
  20. Gnoli, C.: Metadata about what? : distinguishing between ontic, epistemic, and documental dimensions in knowledge organization (2012) 0.00
    0.0044454644 = product of:
      0.013336393 = sum of:
        0.013336393 = weight(_text_:on in 323) [ClassicSimilarity], result of:
          0.013336393 = score(doc=323,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.121501654 = fieldWeight in 323, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=323)
      0.33333334 = coord(1/3)
    
    Abstract
    The spread of many new media and formats is changing the scenario faced by knowledge organizers: as printed monographs are not the only standard form of knowledge carrier anymore, the traditional kind of knowledge organization (KO) systems based on academic disciplines is put into question. A sounder foundation can be provided by an analysis of the different dimensions concurring to form the content of any knowledge item-what Brian Vickery described as the steps "from the world to the classifier." The ultimate referents of documents are the phenomena of the real world, that can be ordered by ontology, the study of what exists. Phenomena coexist in subjects with the perspectives by which they are considered, pertaining to epistemology, and with the formal features of knowledge carriers, adding a further, pragmatic layer. All these dimensions can be accounted for in metadata, but are often done so in mixed ways, making indexes less rigorous and interoperable. For example, while facet analysis was originally developed for subject indexing, many "faceted" interfaces today mix subject facets with form facets, and schemes presented as "ontologies" for the "semantic Web" also code for non-semantic information. In bibliographic classifications, phenomena are often confused with the disciplines dealing with them, the latter being assumed to be the most useful starting point, for users will have either one or another perspective. A general citation order of dimensions- phenomena, perspective, carrier-is recommended, helping to concentrate most relevant information at the beginning of headings.