Search (57 results, page 2 of 3)

  • × author_ss:"Leydesdorff, L."
  1. Leydesdorff, L.; Salah, A.A.A.: Maps on the basis of the Arts & Humanities Citation Index : the journals Leonardo and Art Journal versus "digital humanities" as a topic (2010) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 3436) [ClassicSimilarity], result of:
          0.02263261 = score(doc=3436,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 3436, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3436)
      0.33333334 = coord(1/3)
    
    Abstract
    The possibilities of using the Arts & Humanities Citation Index (A&HCI) for journal mapping have not been sufficiently recognized because of the absence of a Journal Citations Report (JCR) for this database. A quasi-JCR for the A&HCI ([2008]) was constructed from the data contained in the Web of Science and is used for the evaluation of two journals as examples: Leonardo and Art Journal. The maps on the basis of the aggregated journal-journal citations within this domain can be compared with maps including references to journals in the Science Citation Index and Social Science Citation Index. Art journals are cited by (social) science journals more than by other art journals, but these journals draw upon one another in terms of their own references. This cultural impact in terms of being cited is not found when documents with a topic such as digital humanities are analyzed. This community of practice functions more as an intellectual organizer than a journal.
  2. Zhou, P.; Su, X.; Leydesdorff, L.: ¬A comparative study on communication structures of Chinese journals in the social sciences (2010) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 3580) [ClassicSimilarity], result of:
          0.02263261 = score(doc=3580,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 3580, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3580)
      0.33333334 = coord(1/3)
    
    Abstract
    We argue that the communication structures in the Chinese social sciences have not yet been sufficiently reformed. Citation patterns among Chinese domestic journals in three subject areas - political science and Marxism, library and information science, and economics - are compared with their counterparts internationally. Like their colleagues in the natural and life sciences, Chinese scholars in the social sciences provide fewer references to journal publications than their international counterparts; like their international colleagues, social scientists provide fewer references than natural sciences. The resulting citation networks, therefore, are sparse. Nevertheless, the citation structures clearly suggest that the Chinese social sciences are far less specialized in terms of disciplinary delineations than their international counterparts. Marxism studies are more established than political science in China. In terms of the impact of the Chinese political system on academic fields, disciplines closely related to the political system are less specialized than those weakly related. In the discussion section, we explore reasons that may cause the current stagnation and provide policy recommendations.
  3. Leydesdorff, L.; Opthof, T.: Scopus's source normalized impact per paper (SNIP) versus a journal impact factor based on fractional counting of citations (2010) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 4107) [ClassicSimilarity], result of:
          0.02263261 = score(doc=4107,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 4107, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=4107)
      0.33333334 = coord(1/3)
    
    Abstract
    Impact factors (and similar measures such as the Scimago Journal Rankings) suffer from two problems: (a) citation behavior varies among fields of science and, therefore, leads to systematic differences, and (b) there are no statistics to inform us whether differences are significant. The recently introduced "source normalized impact per paper" indicator of Scopus tries to remedy the first of these two problems, but a number of normalization decisions are involved, which makes it impossible to test for significance. Using fractional counting of citations-based on the assumption that impact is proportionate to the number of references in the citing documents-citations can be contextualized at the paper level and aggregated impacts of sets can be tested for their significance. It can be shown that the weighted impact of Annals of Mathematics (0.247) is not so much lower than that of Molecular Cell (0.386) despite a five-f old difference between their impact factors (2.793 and 13.156, respectively).
  4. Bornmann, L.; Leydesdorff, L.: Which cities produce more excellent papers than can be expected? : a new mapping approach, using Google Maps, based on statistical significance testing (2011) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 4767) [ClassicSimilarity], result of:
          0.02263261 = score(doc=4767,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 4767, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=4767)
      0.33333334 = coord(1/3)
    
    Abstract
    The methods presented in this paper allow for a statistical analysis revealing centers of excellence around the world using programs that are freely available. Based on Web of Science data (a fee-based database), field-specific excellence can be identified in cities where highly cited papers were published more frequently than can be expected. Compared to the mapping approaches published hitherto, our approach is more analytically oriented by allowing the assessment of an observed number of excellent papers for a city against the expected number. Top performers in output are cities in which authors are located who publish a statistically significant higher number of highly cited papers than can be expected for these cities. As sample data for physics, chemistry, and psychology show, these cities do not necessarily have a high output of highly cited papers.
  5. Leydesdorff, L.; Opthof, T.: Citation analysis with medical subject Headings (MeSH) using the Web of Knowledge : a new routine (2013) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 943) [ClassicSimilarity], result of:
          0.02263261 = score(doc=943,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 943, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=943)
      0.33333334 = coord(1/3)
    
    Abstract
    Citation analysis of documents retrieved from the Medline database (at the Web of Knowledge) has been possible only on a case-by-case basis. A technique is presented here for citation analysis in batch mode using both Medical Subject Headings (MeSH) at the Web of Knowledge and the Science Citation Index at the Web of Science (WoS). This freeware routine is applied to the case of "Brugada Syndrome," a specific disease and field of research (since 1992). The journals containing these publications, for example, are attributed to WoS categories other than "cardiac and cardiovascular systems", perhaps because of the possibility of genetic testing for this syndrome in the clinic. With this routine, all the instruments available for citation analysis can now be used on the basis of MeSH terms. Other options for crossing between Medline, WoS, and Scopus are also reviewed.
  6. Ye, F.Y.; Yu, S.S.; Leydesdorff, L.: ¬The Triple Helix of university-industry-government relations at the country level and its dynamic evolution under the pressures of globalization (2013) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 1110) [ClassicSimilarity], result of:
          0.02263261 = score(doc=1110,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 1110, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1110)
      0.33333334 = coord(1/3)
    
    Abstract
    Using data from the Web of Science (WoS), we analyze the mutual information among university, industry, and government addresses (U-I-G) at the country level for a number of countries. The dynamic evolution of the Triple Helix can thus be compared among developed and developing nations in terms of cross-sectional coauthorship relations. The results show that the Triple Helix interactions among the three subsystems U-I-G become less intensive over time, but unequally for different countries. We suggest that globalization erodes local Triple Helix relations and thus can be expected to have increased differentiation in national systems since the mid-1990s. This effect of globalization is more pronounced in developed countries than in developing ones. In the dynamic analysis, we focus on a more detailed comparison between China and the United States. Specifically, the Chinese Academy of the (Social) Sciences is changing increasingly from a public research institute to an academic one, and this has a measurable effect on China's position in the globalization.
  7. Leydesdorff, L.; Bornmann, L.: ¬The operationalization of "fields" as WoS subject categories (WCs) in evaluative bibliometrics : the cases of "library and information science" and "science & technology studies" (2016) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 2779) [ClassicSimilarity], result of:
          0.02263261 = score(doc=2779,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 2779, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=2779)
      0.33333334 = coord(1/3)
    
    Abstract
    Normalization of citation scores using reference sets based on Web of Science subject categories (WCs) has become an established ("best") practice in evaluative bibliometrics. For example, the Times Higher Education World University Rankings are, among other things, based on this operationalization. However, WCs were developed decades ago for the purpose of information retrieval and evolved incrementally with the database; the classification is machine-based and partially manually corrected. Using the WC "information science & library science" and the WCs attributed to journals in the field of "science and technology studies," we show that WCs do not provide sufficient analytical clarity to carry bibliometric normalization in evaluation practices because of "indexer effects." Can the compliance with "best practices" be replaced with an ambition to develop "best possible practices"? New research questions can then be envisaged.
  8. Rotolo, D.; Rafols, I.; Hopkins, M.M.; Leydesdorff, L.: Strategic intelligence on emerging technologies : scientometric overlay mapping (2017) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 3322) [ClassicSimilarity], result of:
          0.02263261 = score(doc=3322,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 3322, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3322)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper examines the use of scientometric overlay mapping as a tool of "strategic intelligence" to aid the governing of emerging technologies. We develop an integrative synthesis of different overlay mapping techniques and associated perspectives on technological emergence across geographical, social, and cognitive spaces. To do so, we longitudinally analyze (with publication and patent data) three case studies of emerging technologies in the medical domain. These are RNA interference (RNAi), human papillomavirus (HPV) testing technologies for cervical cancer, and thiopurine methyltransferase (TPMT) genetic testing. Given the flexibility (i.e., adaptability to different sources of data) and granularity (i.e., applicability across multiple levels of data aggregation) of overlay mapping techniques, we argue that these techniques can favor the integration and comparison of results from different contexts and cases, thus potentially functioning as a platform for "distributed" strategic intelligence for analysts and decision makers.
  9. Leydesdorff, L.: ¬The construction and globalization of the knowledge base in inter-human communication systems (2003) 0.01
    0.0067615155 = product of:
      0.020284547 = sum of:
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 1621) [ClassicSimilarity], result of:
              0.040569093 = score(doc=1621,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 1621, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1621)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 5.2003 19:48:04
  10. Lucio-Arias, D.; Leydesdorff, L.: ¬An indicator of research front activity : measuring intellectual organization as uncertainty reduction in document sets (2009) 0.01
    0.0062868367 = product of:
      0.01886051 = sum of:
        0.01886051 = weight(_text_:on in 3297) [ClassicSimilarity], result of:
          0.01886051 = score(doc=3297,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 3297, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3297)
      0.33333334 = coord(1/3)
    
    Abstract
    When using scientific literature to model scholarly discourse, a research specialty can be operationalized as an evolving set of related documents. Each publication can be expected to contribute to the further development of the specialty at the research front. The specific combinations of title words and cited references in a paper can then be considered as a signature of the knowledge claim in the paper: New words and combinations of words can be expected to represent variation, while each paper is at the same time selectively positioned into the intellectual organization of a field using context-relevant references. Can the mutual information among these three dimensions - title words, cited references, and sequence numbers - be used as an indicator of the extent to which intellectual organization structures the uncertainty prevailing at a research front? The effect of the discovery of nanotubes (1991) on the previously existing field of fullerenes is used as a test case. Thereafter, this method is applied to science studies with a focus on scientometrics using various sample delineations. An emerging research front about citation analysis can be indicated.
  11. Leydesdorff, L.; Bornmann, L.: Integrated impact indicators compared with impact factors : an alternative research design with policy implications (2011) 0.01
    0.0062868367 = product of:
      0.01886051 = sum of:
        0.01886051 = weight(_text_:on in 4919) [ClassicSimilarity], result of:
          0.01886051 = score(doc=4919,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 4919, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4919)
      0.33333334 = coord(1/3)
    
    Abstract
    In bibliometrics, the association of "impact" with central-tendency statistics is mistaken. Impacts add up, and citation curves therefore should be integrated instead of averaged. For example, the journals MIS Quarterly and Journal of the American Society for Information Science and Technology differ by a factor of 2 in terms of their respective impact factors (IF), but the journal with the lower IF has the higher impact. Using percentile ranks (e.g., top-1%, top-10%, etc.), an Integrated Impact Indicator (I3) can be based on integration of the citation curves, but after normalization of the citation curves to the same scale. The results across document sets can be compared as percentages of the total impact of a reference set. Total number of citations, however, should not be used instead because the shape of the citation curves is then not appreciated. I3 can be applied to any document set and any citation window. The results of the integration (summation) are fully decomposable in terms of journals or institutional units such as nations, universities, and so on because percentile ranks are determined at the paper level. In this study, we first compare I3 with IFs for the journals in two Institute for Scientific Information subject categories ("Information Science & Library Science" and "Multidisciplinary Sciences"). The library and information science set is additionally decomposed in terms of nations. Policy implications of this possible paradigm shift in citation impact analysis are specified.
  12. Leydesdorff, L.; Hammarfelt, B.: ¬The structure of the Arts & Humanities Citation Index : a mapping on the basis of aggregated citations among 1,157 journals (2011) 0.01
    0.0062868367 = product of:
      0.01886051 = sum of:
        0.01886051 = weight(_text_:on in 4941) [ClassicSimilarity], result of:
          0.01886051 = score(doc=4941,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 4941, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4941)
      0.33333334 = coord(1/3)
    
    Abstract
    Using the Arts & Humanities Citation Index (A&HCI) 2008, we apply mapping techniques previously developed for mapping journal structures in the Science and Social Sciences Citation Indices. Citation relations among the 110,718 records were aggregated at the level of 1,157 journals specific to the A&HCI, and the journal structures are questioned on whether a cognitive structure can be reconstructed and visualized. Both cosine-normalization (bottom up) and factor analysis (top down) suggest a division into approximately 12 subsets. The relations among these subsets are explored using various visualization techniques. However, we were not able to retrieve this structure using the Institute for Scientific Information Subject Categories, including the 25 categories that are specific to the A&HCI. We discuss options for validation such as against the categories of the Humanities Indicators of the American Academy of Arts and Sciences, the panel structure of the European Reference Index for the Humanities, and compare our results with the curriculum organization of the Humanities Section of the College of Letters and Sciences of the University of California at Los Angeles as an example of institutional organization.
  13. Shelton, R.D.; Leydesdorff, L.: Publish or patent : bibliometric evidence for empirical trade-offs in national funding strategies (2012) 0.01
    0.0062868367 = product of:
      0.01886051 = sum of:
        0.01886051 = weight(_text_:on in 70) [ClassicSimilarity], result of:
          0.01886051 = score(doc=70,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 70, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=70)
      0.33333334 = coord(1/3)
    
    Abstract
    Multivariate linear regression models suggest a trade-off in allocations of national research and development (R&D). Government funding and spending in the higher education sector encourage publications as a long-term research benefit. Conversely, other components such as industrial funding and spending in the business sector encourage patenting. Our results help explain why the United States trails the European Union in publications: The focus in the United States is on industrial funding-some 70% of its total R&D investment. Likewise, our results also help explain why the European Union trails the United States in patenting, since its focus on government funding is less effective than industrial funding in predicting triadic patenting. Government funding contributes negatively to patenting in a multiple regression, and this relationship is significant in the case of triadic patenting. We provide new forecasts about the relationships of the United States, the European Union, and China for publishing; these results suggest much later dates for changes than previous forecasts because Chinese growth has been slowing down since 2003. Models for individual countries might be more successful than regression models whose parameters are averaged over a set of countries because nations can be expected to differ historically in terms of the institutional arrangements and funding schemes.
  14. Chen, C.; Leydesdorff, L.: Patterns of connections and movements in dual-map overlays : a new method of publication portfolio analysis (2014) 0.01
    0.0062868367 = product of:
      0.01886051 = sum of:
        0.01886051 = weight(_text_:on in 1200) [ClassicSimilarity], result of:
          0.01886051 = score(doc=1200,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 1200, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1200)
      0.33333334 = coord(1/3)
    
    Abstract
    Portfolio analysis of the publication profile of a unit of interest, ranging from individuals and organizations to a scientific field or interdisciplinary programs, aims to inform analysts and decision makers about the position of the unit, where it has been, and where it may go in a complex adaptive environment. A portfolio analysis may aim to identify the gap between the current position of an organization and a goal that it intends to achieve or identify competencies of multiple institutions. We introduce a new visual analytic method for analyzing, comparing, and contrasting characteristics of publication portfolios. The new method introduces a novel design of dual-map thematic overlays on global maps of science. Each publication portfolio can be added as one layer of dual-map overlays over 2 related, but distinct, global maps of science: one for citing journals and the other for cited journals. We demonstrate how the new design facilitates a portfolio analysis in terms of patterns emerging from the distributions of citation threads and the dynamics of trajectories as a function of space and time. We first demonstrate the analysis of portfolios defined on a single source article. Then we contrast publication portfolios of multiple comparable units of interest; namely, colleges in universities and corporate research organizations. We also include examples of overlays of scientific fields. We expect that our method will provide new insights to portfolio analysis.
  15. Leydesdorff, L.; Moya-Anegón, F. de; Nooy, W. de: Aggregated journal-journal citation relations in scopus and web of science matched and compared in terms of networks, maps, and interactive overlays (2016) 0.01
    0.0062868367 = product of:
      0.01886051 = sum of:
        0.01886051 = weight(_text_:on in 3090) [ClassicSimilarity], result of:
          0.01886051 = score(doc=3090,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 3090, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3090)
      0.33333334 = coord(1/3)
    
    Abstract
    We compare the network of aggregated journal-journal citation relations provided by the Journal Citation Reports (JCR) 2012 of the Science Citation Index (SCI) and Social Sciences Citation Index (SSCI) with similar data based on Scopus 2012. First, global and overlay maps were developed for the 2 sets separately. Using fuzzy-string matching and ISSN numbers, we were able to match 10,524 journal names between the 2 sets: 96.4% of the 10,936 journals contained in JCR, or 51.2% of the 20,554 journals covered by Scopus. Network analysis was pursued on the set of journals shared between the 2 databases and the 2 sets of unique journals. Citations among the shared journals are more comprehensively covered in JCR than in Scopus, so the network in JCR is denser and more connected than in Scopus. The ranking of shared journals in terms of indegree (i.e., numbers of citing journals) or total citations is similar in both databases overall (Spearman rank correlation ??>?0.97), but some individual journals rank very differently. Journals that are unique to Scopus seem to be less important-they are citing shared journals rather than being cited by them-but the humanities are covered better in Scopus than in JCR.
  16. Hellsten, I.; Leydesdorff, L.: Automated analysis of actor-topic networks on twitter : new approaches to the analysis of socio-semantic networks (2020) 0.01
    0.0062868367 = product of:
      0.01886051 = sum of:
        0.01886051 = weight(_text_:on in 5610) [ClassicSimilarity], result of:
          0.01886051 = score(doc=5610,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 5610, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5610)
      0.33333334 = coord(1/3)
    
    Abstract
    Social media data provide increasing opportunities for the automated analysis of large sets of textual documents. So far, automated tools have been developed either to account for the social networks among participants in the debates, or to analyze the content of these debates. Less attention has been paid to mapping co-occurrences of actors (participants) and topics (content) in online debates that can be considered as socio-semantic networks. We propose a new, automated approach that uses the whole matrix of co-addressed topics and actors for understanding and visualizing online debates. We show the advantages of the new approach with the analysis of two data sets: first, a large set of English-language Twitter messages at the Rio?+?20 meeting, in June 2012 (72,077 tweets), and second, a smaller data set of Dutch-language Twitter messages on bird flu related to poultry farming in 2015-2017 (2,139 tweets). We discuss the theoretical, methodological, and substantive implications of our approach, also for the analysis of other social media data.
  17. Leydesdorff, L.: Theories of citation? (1999) 0.01
    0.00622365 = product of:
      0.01867095 = sum of:
        0.01867095 = weight(_text_:on in 5130) [ClassicSimilarity], result of:
          0.01867095 = score(doc=5130,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.17010231 = fieldWeight in 5130, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5130)
      0.33333334 = coord(1/3)
    
    Abstract
    Citations support the communication of specialist knowledge by allowing authors and readers to make specific selections in several contexts at the same time. In the interactions between the social network of authors and the network of their reflexive communications, a sub textual code of communication with a distributed character has emerged. Citation analysis reflects on citation practices. Reference lists are aggregated in scientometric analysis using one of the available contexts to reduce the complexity: geometrical representations of dynamic operations are reflected in corresponding theories of citation. The specific contexts represented in the modern citation can be deconstructed from the perspective of the cultural evolution of scientific communication
  18. Leydesdorff, L.; Shin, J.C.: How to evaluate universities in terms of their relative citation impacts : fractional counting of citations and the normalization of differences among disciplines (2011) 0.01
    0.00622365 = product of:
      0.01867095 = sum of:
        0.01867095 = weight(_text_:on in 4466) [ClassicSimilarity], result of:
          0.01867095 = score(doc=4466,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.17010231 = fieldWeight in 4466, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4466)
      0.33333334 = coord(1/3)
    
    Abstract
    Fractional counting of citations can improve on ranking of multidisciplinary research units (such as universities) by normalizing the differences among fields of science in terms of differences in citation behavior. Furthermore, normalization in terms of citing papers abolishes the unsolved questions in scientometrics about the delineation of fields of science in terms of journals and normalization when comparing among different (sets of) journals. Using publication and citation data of seven Korean research universities, we demonstrate the advantages and the differences in the rankings, explain the possible statistics, and suggest ways to visualize the differences in (citing) audiences in terms of a network.
  19. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.01
    0.0056345966 = product of:
      0.01690379 = sum of:
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
              0.03380758 = score(doc=4186,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 4186, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4186)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 1.2011 12:51:07
  20. Leydesdorff, L.; Johnson, M.W.; Ivanova, I.: Toward a calculus of redundancy : signification, codification, and anticipation in cultural evolution (2018) 0.01
    0.0056345966 = product of:
      0.01690379 = sum of:
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 4463) [ClassicSimilarity], result of:
              0.03380758 = score(doc=4463,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 4463, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4463)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    29. 9.2018 11:22:09