Search (64 results, page 1 of 4)

  • × theme_ss:"Automatisches Abstracting"
  1. Kannan, R.; Ghinea, G.; Swaminathan, S.: What do you wish to see? : A summarization system for movies based on user preferences (2015) 0.04
    0.044505917 = product of:
      0.06675887 = sum of:
        0.023856867 = weight(_text_:on in 2683) [ClassicSimilarity], result of:
          0.023856867 = score(doc=2683,freq=10.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.21734878 = fieldWeight in 2683, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.03125 = fieldNorm(doc=2683)
        0.042902 = product of:
          0.085804 = sum of:
            0.085804 = weight(_text_:demand in 2683) [ClassicSimilarity], result of:
              0.085804 = score(doc=2683,freq=2.0), product of:
                0.31127608 = queryWeight, product of:
                  6.237302 = idf(docFreq=234, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2756524 = fieldWeight in 2683, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.237302 = idf(docFreq=234, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2683)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Video summarization aims at producing a compact version of a full-length video while preserving the significant content of the original video. Movie summarization condenses a full-length movie into a summary that still retains the most significant and interesting content of the original movie. In the past, several movie summarization systems have been proposed to generate a movie summary based on low-level video features such as color, motion, texture, etc. However, a generic summary, which is common to everyone and is produced based only on low-level video features will not satisfy every user. As users' preferences for the summary differ vastly for the same movie, there is a need for a personalized movie summarization system nowadays. To address this demand, this paper proposes a novel system to generate semantically meaningful video summaries for the same movie, which are tailored to the preferences and interests of a user. For a given movie, shots and scenes are automatically detected and their high-level features are semi-automatically annotated. Preferences over high-level movie features are explicitly collected from the user using a query interface. The user preferences are generated by means of a stored-query. Movie summaries are generated at shot level and scene level, where shots or scenes are selected for summary skim based on the similarity measured between shots and scenes, and the user's preferences. The proposed movie summarization system is evaluated subjectively using a sample of 20 subjects with eight movies in the English language. The quality of the generated summaries is assessed by informativeness, enjoyability, relevance, and acceptance metrics and Quality of Perception measures. Further, the usability of the proposed summarization system is subjectively evaluated by conducting a questionnaire survey. The experimental results on the performance of the proposed movie summarization approach show the potential of the proposed system.
  2. Robin, J.; McKeown, K.: Empirically designing and evaluating a new revision-based model for summary generation (1996) 0.03
    0.032256197 = product of:
      0.048384294 = sum of:
        0.021338228 = weight(_text_:on in 6751) [ClassicSimilarity], result of:
          0.021338228 = score(doc=6751,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.19440265 = fieldWeight in 6751, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=6751)
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 6751) [ClassicSimilarity], result of:
              0.054092128 = score(doc=6751,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 6751, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6751)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Presents a system for summarizing quantitative data in natural language, focusing on the use of a corpus of basketball game summaries, drawn from online news services, to empirically shape the system design and to evaluate the approach. Initial corpus analysis revealed characteristics of textual summaries that challenge the capabilities of current language generation systems. A revision based corpus analysis was used to identify and encode the revision rules of the system. Presents a quantitative evaluation, using several test corpora, to measure the robustness of the new revision based model
    Date
    6. 3.1997 16:22:15
  3. Vanderwende, L.; Suzuki, H.; Brockett, J.M.; Nenkova, A.: Beyond SumBasic : task-focused summarization with sentence simplification and lexical expansion (2007) 0.03
    0.028611436 = product of:
      0.042917155 = sum of:
        0.02263261 = weight(_text_:on in 948) [ClassicSimilarity], result of:
          0.02263261 = score(doc=948,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 948, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=948)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 948) [ClassicSimilarity], result of:
              0.040569093 = score(doc=948,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 948, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=948)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In recent years, there has been increased interest in topic-focused multi-document summarization. In this task, automatic summaries are produced in response to a specific information request, or topic, stated by the user. The system we have designed to accomplish this task comprises four main components: a generic extractive summarization system, a topic-focusing component, sentence simplification, and lexical expansion of topic words. This paper details each of these components, together with experiments designed to quantify their individual contributions. We include an analysis of our results on two large datasets commonly used to evaluate task-focused summarization, the DUC2005 and DUC2006 datasets, using automatic metrics. Additionally, we include an analysis of our results on the DUC2006 task according to human evaluation metrics. In the human evaluation of system summaries compared to human summaries, i.e., the Pyramid method, our system ranked first out of 22 systems in terms of overall mean Pyramid score; and in the human evaluation of summary responsiveness to the topic, our system ranked third out of 35 systems.
  4. Kim, H.H.; Kim, Y.H.: Generic speech summarization of transcribed lecture videos : using tags and their semantic relations (2016) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 2640) [ClassicSimilarity], result of:
          0.01886051 = score(doc=2640,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 2640, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2640)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 2640) [ClassicSimilarity], result of:
              0.03380758 = score(doc=2640,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 2640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2640)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    We propose a tag-based framework that simulates human abstractors' ability to select significant sentences based on key concepts in a sentence as well as the semantic relations between key concepts to create generic summaries of transcribed lecture videos. The proposed extractive summarization method uses tags (viewer- and author-assigned terms) as key concepts. Our method employs Flickr tag clusters and WordNet synonyms to expand tags and detect the semantic relations between tags. This method helps select sentences that have a greater number of semantically related key concepts. To investigate the effectiveness and uniqueness of the proposed method, we compare it with an existing technique, latent semantic analysis (LSA), using intrinsic and extrinsic evaluations. The results of intrinsic evaluation show that the tag-based method is as or more effective than the LSA method. We also observe that in the extrinsic evaluation, the grand mean accuracy score of the tag-based method is higher than that of the LSA method, with a statistically significant difference. Elaborating on our results, we discuss the theoretical and practical implications of our findings for speech video summarization and retrieval.
    Date
    22. 1.2016 12:29:41
  5. Oh, H.; Nam, S.; Zhu, Y.: Structured abstract summarization of scientific articles : summarization using full-text section information (2023) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 889) [ClassicSimilarity], result of:
          0.01886051 = score(doc=889,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 889, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=889)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 889) [ClassicSimilarity], result of:
              0.03380758 = score(doc=889,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 889, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=889)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The automatic summarization of scientific articles differs from other text genres because of the structured format and longer text length. Previous approaches have focused on tackling the lengthy nature of scientific articles, aiming to improve the computational efficiency of summarizing long text using a flat, unstructured abstract. However, the structured format of scientific articles and characteristics of each section have not been fully explored, despite their importance. The lack of a sufficient investigation and discussion of various characteristics for each section and their influence on summarization results has hindered the practical use of automatic summarization for scientific articles. To provide a balanced abstract proportionally emphasizing each section of a scientific article, the community introduced the structured abstract, an abstract with distinct, labeled sections. Using this information, in this study, we aim to understand tasks ranging from data preparation to model evaluation from diverse viewpoints. Specifically, we provide a preprocessed large-scale dataset and propose a summarization method applying the introduction, methods, results, and discussion (IMRaD) format reflecting the characteristics of each section. We also discuss the objective benchmarks and perspectives of state-of-the-art algorithms and present the challenges and research directions in this area.
    Date
    22. 1.2023 18:57:12
  6. Jiang, Y.; Meng, R.; Huang, Y.; Lu, W.; Liu, J.: Generating keyphrases for readers : a controllable keyphrase generation framework (2023) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 1012) [ClassicSimilarity], result of:
          0.01886051 = score(doc=1012,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 1012, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1012)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 1012) [ClassicSimilarity], result of:
              0.03380758 = score(doc=1012,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 1012, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1012)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    With the wide application of keyphrases in many Information Retrieval (IR) and Natural Language Processing (NLP) tasks, automatic keyphrase prediction has been emerging. However, these statistically important phrases are contributing increasingly less to the related tasks because the end-to-end learning mechanism enables models to learn the important semantic information of the text directly. Similarly, keyphrases are of little help for readers to quickly grasp the paper's main idea because the relationship between the keyphrase and the paper is not explicit to readers. Therefore, we propose to generate keyphrases with specific functions for readers to bridge the semantic gap between them and the information producers, and verify the effectiveness of the keyphrase function for assisting users' comprehension with a user experiment. A controllable keyphrase generation framework (the CKPG) that uses the keyphrase function as a control code to generate categorized keyphrases is proposed and implemented based on Transformer, BART, and T5, respectively. For the Computer Science domain, the Macro-avgs of , , and on the Paper with Code dataset are up to 0.680, 0.535, and 0.558, respectively. Our experimental results indicate the effectiveness of the CKPG models.
    Date
    22. 6.2023 14:55:20
  7. Ahmad, K.: Text summarisation : the role of lexical cohesion analysis (1995) 0.01
    0.012319634 = product of:
      0.0369589 = sum of:
        0.0369589 = weight(_text_:on in 5795) [ClassicSimilarity], result of:
          0.0369589 = score(doc=5795,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.33671528 = fieldWeight in 5795, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=5795)
      0.33333334 = coord(1/3)
    
    Abstract
    The work in automatic text summary focuses mainly on computational models of texts. The artificial intelligence related work in text summary deals mainly with narrative texts such as newspaper reports and stories. Presents a study on the summary of non-narrative texts such as those in scientific and technical communication. Discusses syntactic cohesion; lexical cohesion; complex lexical repetition; simple and complex paraphrase; bonds and links; and Tele-pattan; an architecture for cohesion based text analysis and summarisation system working on SGML
  8. Nomoto, T.: Discriminative sentence compression with conditional random fields (2007) 0.01
    0.011928434 = product of:
      0.0357853 = sum of:
        0.0357853 = weight(_text_:on in 945) [ClassicSimilarity], result of:
          0.0357853 = score(doc=945,freq=10.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.32602316 = fieldWeight in 945, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=945)
      0.33333334 = coord(1/3)
    
    Abstract
    The paper focuses on a particular approach to automatic sentence compression which makes use of a discriminative sequence classifier known as Conditional Random Fields (CRF). We devise several features for CRF that allow it to incorporate information on nonlinear relations among words. Along with that, we address the issue of data paucity by collecting data from RSS feeds available on the Internet, and turning them into training data for use with CRF, drawing on techniques from biology and information retrieval. We also discuss a recursive application of CRF on the syntactic structure of a sentence as a way of improving the readability of the compression it generates. Experiments found that our approach works reasonably well compared to the state-of-the-art system [Knight, K., & Marcu, D. (2002). Summarization beyond sentence extraction: A probabilistic approach to sentence compression. Artificial Intelligence 139, 91-107.].
  9. Ye, S.; Chua, T.-S.; Kan, M.-Y.; Qiu, L.: Document concept lattice for text understanding and summarization (2007) 0.01
    0.010669115 = product of:
      0.032007344 = sum of:
        0.032007344 = weight(_text_:on in 941) [ClassicSimilarity], result of:
          0.032007344 = score(doc=941,freq=8.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.29160398 = fieldWeight in 941, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=941)
      0.33333334 = coord(1/3)
    
    Abstract
    We argue that the quality of a summary can be evaluated based on how many concepts in the original document(s) that can be preserved after summarization. Here, a concept refers to an abstract or concrete entity or its action often expressed by diverse terms in text. Summary generation can thus be considered as an optimization problem of selecting a set of sentences with minimal answer loss. In this paper, we propose a document concept lattice that indexes the hierarchy of local topics tied to a set of frequent concepts and the corresponding sentences containing these topics. The local topics will specify the promising sub-spaces related to the selected concepts and sentences. Based on this lattice, the summary is an optimized selection of a set of distinct and salient local topics that lead to maximal coverage of concepts with the given number of sentences. Our summarizer based on the concept lattice has demonstrated competitive performance in Document Understanding Conference 2005 and 2006 evaluations as well as follow-on tests.
  10. Craven, T.C.: ¬A computer-aided abstracting tool kit (1993) 0.01
    0.010058938 = product of:
      0.030176813 = sum of:
        0.030176813 = weight(_text_:on in 6506) [ClassicSimilarity], result of:
          0.030176813 = score(doc=6506,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.27492687 = fieldWeight in 6506, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=6506)
      0.33333334 = coord(1/3)
    
    Abstract
    Describes the abstracting assistance features being prototyped in the TEXNET text network management system. Sentence weighting methods include: weithing negatively or positively on the stems in a selected passage; weighting on general lists of cue words, adjusting weights of selected segments; and weighting of occurrence of frequent stems. The user may adjust a number of parameters: the minimum strength of extracts; the threshold for frequent word/stems and the amount sentence weight is to be adjusted for each weighting type
  11. Sparck Jones, K.; Endres-Niggemeyer, B.: Introduction: automatic summarizing (1995) 0.01
    0.010058938 = product of:
      0.030176813 = sum of:
        0.030176813 = weight(_text_:on in 2931) [ClassicSimilarity], result of:
          0.030176813 = score(doc=2931,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.27492687 = fieldWeight in 2931, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=2931)
      0.33333334 = coord(1/3)
    
    Abstract
    Automatic summarizing is a research topic whose time has come. The papers illustrate some of the relevant work already under way. Places these papers in their wider context: why research and development on automatic summarizing is timely, what areas of work and ideas it should draw on, how future investigations and experiments can be effectively framed
  12. Over, P.; Dang, H.; Harman, D.: DUC in context (2007) 0.01
    0.010058938 = product of:
      0.030176813 = sum of:
        0.030176813 = weight(_text_:on in 934) [ClassicSimilarity], result of:
          0.030176813 = score(doc=934,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.27492687 = fieldWeight in 934, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=934)
      0.33333334 = coord(1/3)
    
    Abstract
    Recent years have seen increased interest in text summarization with emphasis on evaluation of prototype systems. Many factors can affect the design of such evaluations, requiring choices among competing alternatives. This paper examines several major themes running through three evaluations: SUMMAC, NTCIR, and DUC, with a concentration on DUC. The themes are extrinsic and intrinsic evaluation, evaluation procedures and methods, generic versus focused summaries, single- and multi-document summaries, length and compression issues, extracts versus abstracts, and issues with genre.
  13. Xu, D.; Cheng, G.; Qu, Y.: Preferences in Wikipedia abstracts : empirical findings and implications for automatic entity summarization (2014) 0.01
    0.009239726 = product of:
      0.027719175 = sum of:
        0.027719175 = weight(_text_:on in 2700) [ClassicSimilarity], result of:
          0.027719175 = score(doc=2700,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.25253648 = fieldWeight in 2700, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=2700)
      0.33333334 = coord(1/3)
    
    Abstract
    The volume of entity-centric structured data grows rapidly on the Web. The description of an entity, composed of property-value pairs (a.k.a. features), has become very large in many applications. To avoid information overload, efforts have been made to automatically select a limited number of features to be shown to the user based on certain criteria, which is called automatic entity summarization. However, to the best of our knowledge, there is a lack of extensive studies on how humans rank and select features in practice, which can provide empirical support and inspire future research. In this article, we present a large-scale statistical analysis of the descriptions of entities provided by DBpedia and the abstracts of their corresponding Wikipedia articles, to empirically study, along several different dimensions, which kinds of features are preferable when humans summarize. Implications for automatic entity summarization are drawn from the findings.
  14. Goh, A.; Hui, S.C.: TES: a text extraction system (1996) 0.01
    0.009015355 = product of:
      0.027046064 = sum of:
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 6599) [ClassicSimilarity], result of:
              0.054092128 = score(doc=6599,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 6599, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6599)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    26. 2.1997 10:22:43
  15. Jones, P.A.; Bradbeer, P.V.G.: Discovery of optimal weights in a concept selection system (1996) 0.01
    0.009015355 = product of:
      0.027046064 = sum of:
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 6974) [ClassicSimilarity], result of:
              0.054092128 = score(doc=6974,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 6974, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6974)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon
  16. Paice, C.D.: Automatic abstracting (1994) 0.01
    0.008890929 = product of:
      0.026672786 = sum of:
        0.026672786 = weight(_text_:on in 917) [ClassicSimilarity], result of:
          0.026672786 = score(doc=917,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24300331 = fieldWeight in 917, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.078125 = fieldNorm(doc=917)
      0.33333334 = coord(1/3)
    
    Abstract
    The final report of the 2nd British Library abstracting project (the BLAB project), 1990-1992, which was carried out partly at the Computing Department of Lancaster University, and partly at the Centre for Computational Linguistics, UMIST. This project built on the results of the first project, of 1985-1987, to build a system designed create abstracts automatically from given texts
  17. Galgani, F.; Compton, P.; Hoffmann, A.: Summarization based on bi-directional citation analysis (2015) 0.01
    0.008890929 = product of:
      0.026672786 = sum of:
        0.026672786 = weight(_text_:on in 2685) [ClassicSimilarity], result of:
          0.026672786 = score(doc=2685,freq=8.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24300331 = fieldWeight in 2685, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2685)
      0.33333334 = coord(1/3)
    
    Abstract
    Automatic document summarization using citations is based on summarizing what others explicitly say about the document, by extracting a summary from text around the citations (citances). While this technique works quite well for summarizing the impact of scientific articles, other genres of documents as well as other types of summaries require different approaches. In this paper, we introduce a new family of methods that we developed for legal documents summarization to generate catchphrases for legal cases (where catchphrases are a form of legal summary). Our methods use both incoming and outgoing citations, and we show how citances can be combined with other elements of cited and citing documents, including the full text of the target document, and catchphrases of cited and citing cases. On a legal summarization corpus, our methods outperform competitive baselines. The combination of full text sentences and catchphrases from cited and citing cases is particularly successful. We also apply and evaluate the methods on scientific paper summarization, where they perform at the level of state-of-the-art techniques. Our family of citation-based summarization methods is powerful and flexible enough to target successfully a range of different domains and summarization tasks.
  18. Salton, G.: Automatic text structuring and summarization (1997) 0.01
    0.008801571 = product of:
      0.026404712 = sum of:
        0.026404712 = weight(_text_:on in 145) [ClassicSimilarity], result of:
          0.026404712 = score(doc=145,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24056101 = fieldWeight in 145, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=145)
      0.33333334 = coord(1/3)
    
    Abstract
    Applies the ideas from the automatic link generation research to automatic text summarisation. Using techniques for inter-document link generation, generates intra-document links between passages of a document. Based on the intra-document linkage pattern of a text, characterises the structure of the text. Applies the knowledge of text structure to do automatic text summarisation by passage extraction. Evaluates a set of 50 summaries generated using these techniques by comparing the to paragraph extracts constructed by humans. The automatic summarisation methods perform well, especially in view of the fact that the summaries generates by 2 humans for the same article are surprisingly dissimilar
    Footnote
    Contribution to a special issue on methods and tools for the automatic construction of hypertext
  19. Uyttendaele, C.; Moens, M.-F.; Dumortier, J.: SALOMON: automatic abstracting of legal cases for effective access to court decisions (1998) 0.01
    0.008801571 = product of:
      0.026404712 = sum of:
        0.026404712 = weight(_text_:on in 495) [ClassicSimilarity], result of:
          0.026404712 = score(doc=495,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24056101 = fieldWeight in 495, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=495)
      0.33333334 = coord(1/3)
    
    Abstract
    The SALOMON project summarises Belgian criminal cases in order to improve access to the large number of existing and future cases. A double methodology was used when developing SALOMON: the cases are processed by employing additional knowledge to interpret structural patterns and features on the one hand and by way of occurrence statistics of index terms on the other. SALOMON performs an initial categorisation and structuring of the cases and subsequently extracts the most relevant text units of the alleged offences and of the opinion of the court. The SALOMON techniques do not themselves solve any legal questions, but they do guide the use effectively towards relevant texts
  20. Xiong, S.; Ji, D.: Query-focused multi-document summarization using hypergraph-based ranking (2016) 0.01
    0.008801571 = product of:
      0.026404712 = sum of:
        0.026404712 = weight(_text_:on in 2972) [ClassicSimilarity], result of:
          0.026404712 = score(doc=2972,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24056101 = fieldWeight in 2972, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2972)
      0.33333334 = coord(1/3)
    
    Abstract
    General graph random walk has been successfully applied in multi-document summarization, but it has some limitations to process documents by this way. In this paper, we propose a novel hypergraph based vertex-reinforced random walk framework for multi-document summarization. The framework first exploits the Hierarchical Dirichlet Process (HDP) topic model to learn a word-topic probability distribution in sentences. Then the hypergraph is used to capture both cluster relationship based on the word-topic probability distribution and pairwise similarity among sentences. Finally, a time-variant random walk algorithm for hypergraphs is developed to rank sentences which ensures sentence diversity by vertex-reinforcement in summaries. Experimental results on the public available dataset demonstrate the effectiveness of our framework.

Years

Languages

  • e 63
  • chi 1
  • More… Less…

Types

  • a 61
  • m 1
  • r 1
  • s 1
  • More… Less…