Search (305 results, page 1 of 16)

  • × theme_ss:"Metadaten"
  1. Yee, R.; Beaubien, R.: ¬A preliminary crosswalk from METS to IMS content packaging (2004) 0.06
    0.056425035 = product of:
      0.1692751 = sum of:
        0.1692751 = sum of:
          0.12870601 = weight(_text_:demand in 4752) [ClassicSimilarity], result of:
            0.12870601 = score(doc=4752,freq=2.0), product of:
              0.31127608 = queryWeight, product of:
                6.237302 = idf(docFreq=234, maxDocs=44218)
                0.04990557 = queryNorm
              0.4134786 = fieldWeight in 4752, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                6.237302 = idf(docFreq=234, maxDocs=44218)
                0.046875 = fieldNorm(doc=4752)
          0.040569093 = weight(_text_:22 in 4752) [ClassicSimilarity], result of:
            0.040569093 = score(doc=4752,freq=2.0), product of:
              0.1747608 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04990557 = queryNorm
              0.23214069 = fieldWeight in 4752, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4752)
      0.33333334 = coord(1/3)
    
    Abstract
    As educational technology becomes pervasive, demand will grow for library content to be incorporated into courseware. Among the barriers impeding interoperability between libraries and educational tools is the difference in specifications commonly used for the exchange of digital objects and metadata. Among libraries, Metadata Encoding and Transmission Standard (METS) is a new but increasingly popular standard; the IMS content-package (IMS-CP) plays a parallel role in educational technology. This article describes how METS-encoded library content can be converted into digital objects for IMS-compliant systems through an XSLT-based crosswalk. The conceptual models behind METS and IMS-CP are compared, the design and limitations of an XSLT-based translation are described, and the crosswalks are related to other techniques to enhance interoperability.
    Source
    Library hi tech. 22(2004) no.1, S.69-81
  2. Neumann, M.; Steinberg, J.; Schaer, P.: Web-ccraping for non-programmers : introducing OXPath for digital library metadata harvesting (2017) 0.05
    0.04832534 = product of:
      0.07248801 = sum of:
        0.01886051 = weight(_text_:on in 3895) [ClassicSimilarity], result of:
          0.01886051 = score(doc=3895,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 3895, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3895)
        0.053627502 = product of:
          0.107255004 = sum of:
            0.107255004 = weight(_text_:demand in 3895) [ClassicSimilarity], result of:
              0.107255004 = score(doc=3895,freq=2.0), product of:
                0.31127608 = queryWeight, product of:
                  6.237302 = idf(docFreq=234, maxDocs=44218)
                  0.04990557 = queryNorm
                0.3445655 = fieldWeight in 3895, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.237302 = idf(docFreq=234, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3895)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Building up new collections for digital libraries is a demanding task. Available data sets have to be extracted which is usually done with the help of software developers as it involves custom data handlers or conversion scripts. In cases where the desired data is only available on the data provider's website custom web scrapers are needed. This may be the case for small to medium-size publishers, research institutes or funding agencies. As data curation is a typical task that is done by people with a library and information science background, these people are usually proficient with XML technologies but are not full-stack programmers. Therefore we would like to present a web scraping tool that does not demand the digital library curators to program custom web scrapers from scratch. We present the open-source tool OXPath, an extension of XPath, that allows the user to define data to be extracted from websites in a declarative way. By taking one of our own use cases as an example, we guide you in more detail through the process of creating an OXPath wrapper for metadata harvesting. We also point out some practical things to consider when creating a web scraper (with OXPath). On top of that, we also present a syntax highlighting plugin for the popular text editor Atom that we developed to further support OXPath users and to simplify the authoring process.
  3. Nichols, D.M.; Paynter, G.W.; Chan, C.-H.; Bainbridge, D.; McKay, D.; Twidale, M.B.; Blandford, A.: Experiences in deploying metadata analysis tools for institutional repositories (2009) 0.04
    0.044642597 = product of:
      0.066963896 = sum of:
        0.013336393 = weight(_text_:on in 2986) [ClassicSimilarity], result of:
          0.013336393 = score(doc=2986,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.121501654 = fieldWeight in 2986, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2986)
        0.053627502 = product of:
          0.107255004 = sum of:
            0.107255004 = weight(_text_:demand in 2986) [ClassicSimilarity], result of:
              0.107255004 = score(doc=2986,freq=2.0), product of:
                0.31127608 = queryWeight, product of:
                  6.237302 = idf(docFreq=234, maxDocs=44218)
                  0.04990557 = queryNorm
                0.3445655 = fieldWeight in 2986, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.237302 = idf(docFreq=234, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2986)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Current institutional repository software provides few tools to help metadata librarians understand and analyse their collections. In this paper, we compare and contrast metadata analysis tools that were developed simultaneously, but independently, at two New Zealand institutions during a period of national investment in research repositories: the Metadata Analysis Tool (MAT) at The University of Waikato, and the Kiwi Research Information Service (KRIS) at the National Library of New Zealand. The tools have many similarities: they are convenient, online, on-demand services that harvest metadata using OAI-PMH, they were developed in response to feedback from repository administrators, and they both help pinpoint specific metadata errors as well as generating summary statistics. They also have significant differences: one is a dedicated tool while the other is part of a wider access tool; one gives a holistic view of the metadata while the other looks for specific problems; one seeks patterns in the data values while the other checks that those values conform to metadata standards. Both tools work in a complementary manner to existing web-based administration tools. We have observed that discovery and correction of metadata errors can be quickly achieved by switching web browser views from the analysis tool to the repository interface, and back. We summarise the findings from both tools' deployment into a checklist of requirements for metadata analysis tools.
  4. Martins, S. de Castro: Modelo conceitual de ecossistema semântico de informações corporativas para aplicação em objetos multimídia (2019) 0.04
    0.042826824 = product of:
      0.06424023 = sum of:
        0.021338228 = weight(_text_:on in 117) [ClassicSimilarity], result of:
          0.021338228 = score(doc=117,freq=8.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.19440265 = fieldWeight in 117, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.03125 = fieldNorm(doc=117)
        0.042902 = product of:
          0.085804 = sum of:
            0.085804 = weight(_text_:demand in 117) [ClassicSimilarity], result of:
              0.085804 = score(doc=117,freq=2.0), product of:
                0.31127608 = queryWeight, product of:
                  6.237302 = idf(docFreq=234, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2756524 = fieldWeight in 117, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.237302 = idf(docFreq=234, maxDocs=44218)
                  0.03125 = fieldNorm(doc=117)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Information management in corporate environments is a growing problem as companies' information assets grow and their need to use them in their operations. Several management models have been practiced with application on the most diverse fronts, practices that integrate the so-called Enterprise Content Management. This study proposes a conceptual model of semantic corporate information ecosystem, based on the Universal Document Model proposed by Dagobert Soergel. It focuses on unstructured information objects, especially multimedia, increasingly used in corporate environments, adding semantics and expanding their recovery potential in the composition and reuse of dynamic documents on demand. The proposed model considers stable elements in the organizational environment, such as actors, processes, business metadata and information objects, as well as some basic infrastructures of the corporate information environment. The main objective is to establish a conceptual model that adds semantic intelligence to information assets, leveraging pre-existing infrastructure in organizations, integrating and relating objects to other objects, actors and business processes. The approach methodology considered the state of the art of Information Organization, Representation and Retrieval, Organizational Content Management and Semantic Web technologies, in the scientific literature, as bases for the establishment of an integrative conceptual model. Therefore, the research will be qualitative and exploratory. The predicted steps of the model are: Environment, Data Type and Source Definition, Data Distillation, Metadata Enrichment, and Storage. As a result, in theoretical terms the extended model allows to process heterogeneous and unstructured data according to the established cut-outs and through the processes listed above, allowing value creation in the composition of dynamic information objects, with semantic aggregations to metadata.
  5. Wolfekuhler, M.R.; Punch, W.F.: Finding salient features for personal Web pages categories (1997) 0.03
    0.033380013 = product of:
      0.050070018 = sum of:
        0.026404712 = weight(_text_:on in 2673) [ClassicSimilarity], result of:
          0.026404712 = score(doc=2673,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24056101 = fieldWeight in 2673, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2673)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 2673) [ClassicSimilarity], result of:
              0.04733061 = score(doc=2673,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 2673, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2673)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Examines techniques that discover features in sets of pre-categorized documents, such that similar documents can be found on the WWW. Examines techniques which will classifiy training examples with high accuracy, then explains why this is not necessarily useful. Describes a method for extracting word clusters from the raw document features. Results show that the clustering technique is successful in discovering word groups in personal Web pages which can be used to find similar information on the WWW
    Date
    1. 8.1996 22:08:06
  6. Liechti, O.; Sifer, M.J.; Ichikawa, T.: Structured graph format : XML metadata for describing Web site structure (1998) 0.03
    0.033380013 = product of:
      0.050070018 = sum of:
        0.026404712 = weight(_text_:on in 3597) [ClassicSimilarity], result of:
          0.026404712 = score(doc=3597,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24056101 = fieldWeight in 3597, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3597)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 3597) [ClassicSimilarity], result of:
              0.04733061 = score(doc=3597,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 3597, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3597)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    To improve searching, filtering and processing of information on the Web, a common effort is made in the direction of metadata, defined as machine understandable information about Web resources or other things. In particular, the eXtensible Markup Language (XML) aims at providing a common syntax to emerging metadata formats. Proposes the Structured Graph Format (SGF) an XML compliant markup language based on structured graphs, for capturing Web sites' structure. Presents SGMapper, a client-site tool, which aims to facilitate navigation in large Web sites by generating highly interactive site maps using SGF metadata
    Date
    1. 8.1996 22:08:06
  7. Brasethvik, T.: ¬A semantic modeling approach to metadata (1998) 0.03
    0.033380013 = product of:
      0.050070018 = sum of:
        0.026404712 = weight(_text_:on in 5165) [ClassicSimilarity], result of:
          0.026404712 = score(doc=5165,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24056101 = fieldWeight in 5165, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5165)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 5165) [ClassicSimilarity], result of:
              0.04733061 = score(doc=5165,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 5165, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5165)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    States that heterogeneous project groups today may be expected to use the mechanisms of the Web for sharing information. Metadata has been proposed as a mechanism for expressing the semantics of information and, hence, facilitate information retrieval, understanding and use. Presents an approach to sharing information which aims to use a semantic modeling language as the basis for expressing the semantics of information and designing metadata schemes. Functioning on the borderline between human and computer understandability, the modeling language would be able to express the semantics of published Web documents. Reporting on work in progress, presents the overall framework and ideas
    Date
    9. 9.2000 17:22:23
  8. Seaman, D.: Selection, access, and control in library of electronic texts (1996) 0.03
    0.033380013 = product of:
      0.050070018 = sum of:
        0.026404712 = weight(_text_:on in 599) [ClassicSimilarity], result of:
          0.026404712 = score(doc=599,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24056101 = fieldWeight in 599, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=599)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 599) [ClassicSimilarity], result of:
              0.04733061 = score(doc=599,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 599, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=599)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The Electronic Text Center at the University of Virginia has been mounting SGML full-text databases on-line since 1992, and actively building a user community around this Internet resource. Conceiving of what we do as firmly a library operation, we have sought to integrate the electronic text databases into the training, cataloging, preservation, and collection development areas of our library. Central to our selection criteria is the desire for softwareand platform-independent textsif it's not SGML, it's ephermeraland central to our cataloging endeavors is on SGML bibliographic record such as the Text Encoding Initiative header.
    Source
    Cataloging and classification quarterly. 22(1996) nos.3/4, S.75-84
  9. Jizba, L.; Hillmann, D.I.: Insights from Ithaca : an interview with Diane Hillmann on metadata, Dublin Core, the National Science Digital Library, and more (2004/05) 0.03
    0.033380013 = product of:
      0.050070018 = sum of:
        0.026404712 = weight(_text_:on in 637) [ClassicSimilarity], result of:
          0.026404712 = score(doc=637,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24056101 = fieldWeight in 637, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=637)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 637) [ClassicSimilarity], result of:
              0.04733061 = score(doc=637,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 637, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=637)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In an interview, Diane I. Hillmann, an expert in metadata for digital libraries and currently co-principal investigator for the National Science Digital Library Registry based at Cornell University, discusses her education and career, and provides overviews and insights on metadata initiatives, including standards and models such as the widely adopted Dublin Core schema. She shares her professional interests from the early part of her career with communications, cataloging, and database production services; highlights key issues; and provides ideas and resources for managing changes in metadata standards and digital projects.
    Date
    2.12.2007 19:35:22
  10. Peereboom, M.: DutchESS : Dutch Electronic Subject Service - a Dutch national collaborative effort (2000) 0.03
    0.032256197 = product of:
      0.048384294 = sum of:
        0.021338228 = weight(_text_:on in 4869) [ClassicSimilarity], result of:
          0.021338228 = score(doc=4869,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.19440265 = fieldWeight in 4869, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=4869)
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 4869) [ClassicSimilarity], result of:
              0.054092128 = score(doc=4869,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 4869, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4869)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article gives an overview of the design and organisation of DutchESS, a Dutch information subject gateway created as a national collaborative effort of the National Library and a number of academic libraries. The combined centralised and distributed model of DutchESS is discussed, as well as its selection policy, its metadata format, classification scheme and retrieval options. Also some options for future collaboration on an international level are explored
    Date
    22. 6.2002 19:39:23
  11. Gorman, M.: Metadata or cataloguing? : a false choice (1999) 0.03
    0.032256197 = product of:
      0.048384294 = sum of:
        0.021338228 = weight(_text_:on in 6095) [ClassicSimilarity], result of:
          0.021338228 = score(doc=6095,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.19440265 = fieldWeight in 6095, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=6095)
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 6095) [ClassicSimilarity], result of:
              0.054092128 = score(doc=6095,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 6095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6095)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Libraries, their collections, and bibliographic control are essential components of the provision of access to recorded knowledge. Cataloging is a primary method of bibliographic control. Full or traditional cataloging is very expensive, but relying on keyword searching is inadequate. Alternatives for a solution to cataloging needs for electronic resources including the use of metadata and the Dublin Core are examined. Many questions exist regarding the long-term future of today's electronic documents. Recommendations are made for preserving recorded knowledge and information in the electronic resources for future generations
    Source
    Journal of Internet cataloging. 2(1999) no.1, S.5-22
  12. Understanding metadata (2004) 0.03
    0.032256197 = product of:
      0.048384294 = sum of:
        0.021338228 = weight(_text_:on in 2686) [ClassicSimilarity], result of:
          0.021338228 = score(doc=2686,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.19440265 = fieldWeight in 2686, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=2686)
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 2686) [ClassicSimilarity], result of:
              0.054092128 = score(doc=2686,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 2686, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2686)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Metadata (structured information about an object or collection of objects) is increasingly important to libraries, archives, and museums. And although librarians are familiar with a number of issues that apply to creating and using metadata (e.g., authority control, controlled vocabularies, etc.), the world of metadata is nonetheless different than library cataloging, with its own set of challenges. Therefore, whether you are new to these concepts or quite experienced with classic cataloging, this short (20 pages) introductory paper on metadata can be helpful
    Date
    10. 9.2004 10:22:40
  13. White, H.: Examining scientific vocabulary : mapping controlled vocabularies with free text keywords (2013) 0.03
    0.032256197 = product of:
      0.048384294 = sum of:
        0.021338228 = weight(_text_:on in 1953) [ClassicSimilarity], result of:
          0.021338228 = score(doc=1953,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.19440265 = fieldWeight in 1953, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=1953)
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 1953) [ClassicSimilarity], result of:
              0.054092128 = score(doc=1953,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 1953, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1953)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Scientific repositories create a new environment for studying traditional information science issues. The interaction between indexing terms provided by users and controlled vocabularies continues to be an area of debate and study. This article reports and analyzes findings from a study that mapped the relationships between free text keywords and controlled vocabulary terms used in the sciences. Based on this study's findings recommendations are made about which vocabularies may be better to use in scientific data repositories.
    Date
    29. 5.2015 19:09:22
  14. Hooland, S. van; Bontemps, Y.; Kaufman, S.: Answering the call for more accountability : applying data profiling to museum metadata (2008) 0.03
    0.032002483 = product of:
      0.048003722 = sum of:
        0.027719175 = weight(_text_:on in 2644) [ClassicSimilarity], result of:
          0.027719175 = score(doc=2644,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.25253648 = fieldWeight in 2644, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=2644)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 2644) [ClassicSimilarity], result of:
              0.040569093 = score(doc=2644,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 2644, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2644)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Although the issue of metadata quality is recognized as an important topic within the metadata research community, the cultural heritage sector has been slow to develop methodologies, guidelines and tools for addressing this topic in practice. This paper concentrates on metadata quality specifically within the museum sector and describes the potential of data-profiling techniques for metadata quality evaluation. A case study illustrates the application of a generalpurpose data-profiling tool on a large collection of metadata records from an ethnographic collection. After an analysis of the results of the case-study the paper reviews further steps in our research and presents the implementation of a metadata quality tool within an open-source collection management software.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  15. Belém, F.M.; Almeida, J.M.; Gonçalves, M.A.: ¬A survey on tag recommendation methods : a review (2017) 0.03
    0.031149916 = product of:
      0.046724875 = sum of:
        0.029821085 = weight(_text_:on in 3524) [ClassicSimilarity], result of:
          0.029821085 = score(doc=3524,freq=10.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.271686 = fieldWeight in 3524, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3524)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 3524) [ClassicSimilarity], result of:
              0.03380758 = score(doc=3524,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 3524, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3524)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Tags (keywords freely assigned by users to describe web content) have become highly popular on Web 2.0 applications, because of the strong stimuli and easiness for users to create and describe their own content. This increase in tag popularity has led to a vast literature on tag recommendation methods. These methods aim at assisting users in the tagging process, possibly increasing the quality of the generated tags and, consequently, improving the quality of the information retrieval (IR) services that rely on tags as data sources. Regardless of the numerous and diversified previous studies on tag recommendation, to our knowledge, no previous work has summarized and organized them into a single survey article. In this article, we propose a taxonomy for tag recommendation methods, classifying them according to the target of the recommendations, their objectives, exploited data sources, and underlying techniques. Moreover, we provide a critical overview of these methods, pointing out their advantages and disadvantages. Finally, we describe the main open challenges related to the field, such as tag ambiguity, cold start, and evaluation issues.
    Date
    16.11.2017 13:30:22
  16. Franklin, R.A.: Re-inventing subject access for the semantic web (2003) 0.03
    0.028611436 = product of:
      0.042917155 = sum of:
        0.02263261 = weight(_text_:on in 2556) [ClassicSimilarity], result of:
          0.02263261 = score(doc=2556,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 2556, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=2556)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 2556) [ClassicSimilarity], result of:
              0.040569093 = score(doc=2556,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 2556, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2556)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    First generation scholarly research on the Web lacked a firm system of authority control. Second generation Web research is beginning to model subject access with library science principles of bibliographic control and cataloguing. Harnessing the Web and organising the intellectual content with standards and controlled vocabulary provides precise search and retrieval capability, increasing relevance and efficient use of technology. Dublin Core metadata standards permit a full evaluation and cataloguing of Web resources appropriate to highly specific research needs and discovery. Current research points to a type of structure based on a system of faceted classification. This system allows the semantic and syntactic relationships to be defined. Controlled vocabulary, such as the Library of Congress Subject Headings, can be assigned, not in a hierarchical structure, but rather as descriptive facets of relating concepts. Web design features such as this are adding value to discovery and filtering out data that lack authority. The system design allows for scalability and extensibility, two technical features that are integral to future development of the digital library and resource discovery.
    Date
    30.12.2008 18:22:46
  17. Zavalina, O.; Palmer, C.L.; Jackson, A.S.; Han, M.-J.: Assessing descriptive substance in free-text collection-level metadata (2008) 0.03
    0.028611436 = product of:
      0.042917155 = sum of:
        0.02263261 = weight(_text_:on in 2647) [ClassicSimilarity], result of:
          0.02263261 = score(doc=2647,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 2647, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=2647)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 2647) [ClassicSimilarity], result of:
              0.040569093 = score(doc=2647,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 2647, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2647)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Collection-level metadata has the potential to provide important information about the features and purpose of individual collections. This paper reports on a content analysis of collection records in an aggregation of cultural heritage collections. The findings show that the free-text Description field often provides more accurate and complete representation of subjects and object types than the specified fields. Properties such as importance, uniqueness, comprehensiveness, provenance, and creator are articulated, as well as other vital contextual information about the intentions of a collector and the value of a collection, as a whole, for scholarly users. The results demonstrate that the semantically rich free-text Description field is essential to understanding the context of collections in large aggregations and can serve as a source of data for enhancing and customizing controlled vocabularies.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  18. Wartburg, K. von; Sibille, C.; Aliverti, C.: Metadata collaboration between the Swiss National Library and research institutions in the field of Swiss historiography (2019) 0.03
    0.028611436 = product of:
      0.042917155 = sum of:
        0.02263261 = weight(_text_:on in 5272) [ClassicSimilarity], result of:
          0.02263261 = score(doc=5272,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 5272, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=5272)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
              0.040569093 = score(doc=5272,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 5272, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5272)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article presents examples of metadata collaborations between the Swiss National Library (NL) and research institutions in the field of Swiss historiography. The NL publishes the Bibliography on Swiss History (BSH). In order to meet the demands of its research community, the NL has improved the accessibility and interoperability of the BSH database. Moreover, the BSH takes part in metadata projects such as Metagrid, a web service linking different historical databases. Other metadata collaborations with partners in the historical field such as the Law Sources Foundation (LSF) will position the BSH as an indispensable literature hub for publications on Swiss history.
    Date
    30. 5.2019 19:22:49
  19. Heery, R.: Information gateways : collaboration and content (2000) 0.03
    0.02822417 = product of:
      0.042336255 = sum of:
        0.01867095 = weight(_text_:on in 4866) [ClassicSimilarity], result of:
          0.01867095 = score(doc=4866,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.17010231 = fieldWeight in 4866, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4866)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 4866) [ClassicSimilarity], result of:
              0.04733061 = score(doc=4866,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 4866, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4866)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Information subject gateways provide targeted discovery services for their users, giving access to Web resources selected according to quality and subject coverage criteria. Information gateways recognise that they must collaborate on a wide range of issues relating to content to ensure continued success. This report is informed by discussion of content activities at the 1999 Imesh Workshop. The author considers the implications for subject based gateways of co-operation regarding coverage policy, creation of metadata, and provision of searching and browsing across services. Other possibilities for co-operation include working more closely with information providers, and diclosure of information in joint metadata registries
    Date
    22. 6.2002 19:38:54
  20. Lubas, R.L.; Wolfe, R.H.W.; Fleischman, M.: Creating metadata practices for MIT's OpenCourseWare Project (2004) 0.03
    0.02822417 = product of:
      0.042336255 = sum of:
        0.01867095 = weight(_text_:on in 2843) [ClassicSimilarity], result of:
          0.01867095 = score(doc=2843,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.17010231 = fieldWeight in 2843, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2843)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 2843) [ClassicSimilarity], result of:
              0.04733061 = score(doc=2843,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 2843, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2843)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The MIT libraries were called upon to recommend a metadata scheme for the resources contained in MIT's OpenCourseWare (OCW) project. The resources in OCW needed descriptive, structural, and technical metadata. The SCORM standard, which uses IEEE Learning Object Metadata for its descriptive standard, was selected for its focus on educational objects. However, it was clear that the Libraries would need to recommend how the standard would be applied and adapted to accommodate needs that were not addressed in the standard's specifications. The newly formed MIT Libraries Metadata Unit adapted established practices from AACR2 and MARC traditions when facing situations in which there were no precedents to follow.
    Source
    Library hi tech. 22(2004) no.2, S.138-143

Authors

Years

Languages

Types

  • a 271
  • el 48
  • m 15
  • s 12
  • b 2
  • x 2
  • r 1
  • More… Less…

Subjects