Search (236 results, page 1 of 12)

  • × theme_ss:"Retrievalstudien"
  1. Saracevic, T.: On a method for studying the structure and nature of requests in information retrieval (1983) 0.04
    0.040320244 = product of:
      0.060480364 = sum of:
        0.026672786 = weight(_text_:on in 2417) [ClassicSimilarity], result of:
          0.026672786 = score(doc=2417,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24300331 = fieldWeight in 2417, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.078125 = fieldNorm(doc=2417)
        0.03380758 = product of:
          0.06761516 = sum of:
            0.06761516 = weight(_text_:22 in 2417) [ClassicSimilarity], result of:
              0.06761516 = score(doc=2417,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.38690117 = fieldWeight in 2417, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2417)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Pages
    S.22-25
  2. Pemberton, J.K.; Ojala, M.; Garman, N.: Head to head : searching the Web versus traditional services (1998) 0.04
    0.038148586 = product of:
      0.057222877 = sum of:
        0.030176813 = weight(_text_:on in 3572) [ClassicSimilarity], result of:
          0.030176813 = score(doc=3572,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.27492687 = fieldWeight in 3572, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=3572)
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 3572) [ClassicSimilarity], result of:
              0.054092128 = score(doc=3572,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 3572, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3572)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Describes of 3 searches on the topic of virtual communities done on the WWW using HotBot and traditional databases using LEXIS-NEXIS and ABI/Inform. Concludes that the WWW is a good starting place for a broad concept search but the traditional services are better for more precise topics
    Source
    Online. 22(1998) no.3, S.24-26,28
  3. Blagden, J.F.: How much noise in a role-free and link-free co-ordinate indexing system? (1966) 0.04
    0.03733623 = product of:
      0.05600434 = sum of:
        0.032339036 = weight(_text_:on in 2718) [ClassicSimilarity], result of:
          0.032339036 = score(doc=2718,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.29462588 = fieldWeight in 2718, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2718)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 2718) [ClassicSimilarity], result of:
              0.04733061 = score(doc=2718,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 2718, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2718)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A study of the number of irrelevant documents retrieved in a co-ordinate indexing system that does not employ eitherr roles or links. These tests were based on one hundred actual inquiries received in the library and therefore an evaluation of recall efficiency is not included. Over half the enquiries produced no noise, but the mean average percentage niose figure was approximately 33 per cent based on a total average retireval figure of eighteen documents per search. Details of the size of the indexed collection, methods of indexing, and an analysis of the reasons for the retrieval of irrelevant documents are discussed, thereby providing information officers who are thinking of installing such a system with some evidence on which to base a decision as to whether or not to utilize these devices
    Source
    Journal of documentation. 22(1966), S.203-209
  4. Blair, D.C.: STAIRS Redux : thoughts on the STAIRS evaluation, ten years after (1996) 0.03
    0.033380013 = product of:
      0.050070018 = sum of:
        0.026404712 = weight(_text_:on in 3002) [ClassicSimilarity], result of:
          0.026404712 = score(doc=3002,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24056101 = fieldWeight in 3002, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3002)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 3002) [ClassicSimilarity], result of:
              0.04733061 = score(doc=3002,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 3002, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3002)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The test of retrieval effectiveness performed on IBM's STAIRS and reported in 'Communications of the ACM' 10 years ago, continues to be cited frequently in the information retrieval literature. The reasons for the study's continuing pertinence to today's research are discussed, and the political, legal, and commercial aspects of the study are presented. In addition, the method of calculating recall that was used in the STAIRS study is discussed in some detail, especially how it reduces the 5 major types of uncertainty in recall estimations. It is also suggested that this method of recall estimation may serve as the basis for recall estimations that might be truly comparable between systems
    Source
    Journal of the American Society for Information Science. 47(1996) no.1, S.4-22
  5. Hodges, P.R.: Keyword in title indexes : effectiveness of retrieval in computer searches (1983) 0.03
    0.033380013 = product of:
      0.050070018 = sum of:
        0.026404712 = weight(_text_:on in 5001) [ClassicSimilarity], result of:
          0.026404712 = score(doc=5001,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24056101 = fieldWeight in 5001, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5001)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 5001) [ClassicSimilarity], result of:
              0.04733061 = score(doc=5001,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 5001, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5001)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A study was done to test the effectiveness of retrieval using title word searching. It was based on actual search profiles used in the Mechanized Information Center at Ohio State University, in order ro replicate as closely as possible actual searching conditions. Fewer than 50% of the relevant titles were retrieved by keywords in titles. The low rate of retrieval can be attributes to three sources: titles themselves, user and information specialist ignorance of the subject vocabulary in use, and to general language problems. Across fields it was found that the social sciences had the best retrieval rate, with science having the next best, and arts and humanities the lowest. Ways to enhance and supplement keyword in title searching on the computer and in printed indexes are discussed.
    Date
    14. 3.1996 13:22:21
  6. Rijsbergen, C.J. van: ¬A test for the separation of relevant and non-relevant documents in experimental retrieval collections (1973) 0.03
    0.032256197 = product of:
      0.048384294 = sum of:
        0.021338228 = weight(_text_:on in 5002) [ClassicSimilarity], result of:
          0.021338228 = score(doc=5002,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.19440265 = fieldWeight in 5002, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=5002)
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 5002) [ClassicSimilarity], result of:
              0.054092128 = score(doc=5002,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 5002, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5002)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Many retrievalexperiments are intended to discover ways of improving performance, taking the results obtained with some particular technique as a baseline. The fact that substantial alterations to a system often have little or no effect on particular collections is puzzling. This may be due to the initially poor seperation of relevant and non-relevant documents. The paper presents a procedure for characterizing this seperation for a collection, which can be used to show whether proposed modifications of the base system are likely to be useful.
    Date
    19. 3.1996 11:22:12
  7. Sanderson, M.: ¬The Reuters test collection (1996) 0.03
    0.032256197 = product of:
      0.048384294 = sum of:
        0.021338228 = weight(_text_:on in 6971) [ClassicSimilarity], result of:
          0.021338228 = score(doc=6971,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.19440265 = fieldWeight in 6971, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=6971)
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 6971) [ClassicSimilarity], result of:
              0.054092128 = score(doc=6971,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 6971, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6971)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Describes the Reuters test collection, which at 22.173 references is significantly larger than most traditional test collections. In addition, Reuters has none of the recall calculation problems normally associated with some of the larger test collections available. Explains the method derived by D.D. Lewis to perform retrieval experiments on the Reuters collection and illustrates the use of the Reuters collection using some simple retrieval experiments that compare the performance of stemming algorithms
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon
  8. ¬The Fifth Text Retrieval Conference (TREC-5) (1997) 0.03
    0.032256197 = product of:
      0.048384294 = sum of:
        0.021338228 = weight(_text_:on in 3087) [ClassicSimilarity], result of:
          0.021338228 = score(doc=3087,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.19440265 = fieldWeight in 3087, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=3087)
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 3087) [ClassicSimilarity], result of:
              0.054092128 = score(doc=3087,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 3087, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3087)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Proceedings of the 5th TREC-confrerence held in Gaithersburgh, Maryland, Nov 20-22, 1996. Aim of the conference was discussion on retrieval techniques for large test collections. Different research groups used different techniques, such as automated thesauri, term weighting, natural language techniques, relevance feedback and advanced pattern matching, for information retrieval from the same large database. This procedure makes it possible to compare the results. The proceedings include papers, tables of the system results, and brief system descriptions including timing and storage information
  9. Smithson, S.: Information retrieval evaluation in practice : a case study approach (1994) 0.03
    0.02822417 = product of:
      0.042336255 = sum of:
        0.01867095 = weight(_text_:on in 7302) [ClassicSimilarity], result of:
          0.01867095 = score(doc=7302,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.17010231 = fieldWeight in 7302, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7302)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 7302) [ClassicSimilarity], result of:
              0.04733061 = score(doc=7302,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 7302, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7302)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The evaluation of information retrieval systems is an important yet difficult operation. This paper describes an exploratory evaluation study that takes an interpretive approach to evaluation. The longitudinal study examines evaluation through the information-seeking behaviour of 22 case studies of 'real' users. The eclectic approach to data collection produced behavioral data that is compared with relevance judgements and satisfaction ratings. The study demonstrates considerable variations among the cases, among different evaluation measures within the same case, and among the same measures at different stages within a single case. It is argued that those involved in evaluation should be aware of the difficulties, and base any evaluation on a good understanding of the cases in question
  10. Petrelli, D.: On the role of user-centred evaluation in the advancement of interactive information retrieval (2008) 0.03
    0.026668733 = product of:
      0.0400031 = sum of:
        0.02309931 = weight(_text_:on in 2026) [ClassicSimilarity], result of:
          0.02309931 = score(doc=2026,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.21044704 = fieldWeight in 2026, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2026)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 2026) [ClassicSimilarity], result of:
              0.03380758 = score(doc=2026,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 2026, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2026)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper discusses the role of user-centred evaluations as an essential method for researching interactive information retrieval. It draws mainly on the work carried out during the Clarity Project where different user-centred evaluations were run during the lifecycle of a cross-language information retrieval system. The iterative testing was not only instrumental to the development of a usable system, but it enhanced our knowledge of the potential, impact, and actual use of cross-language information retrieval technology. Indeed the role of the user evaluation was dual: by testing a specific prototype it was possible to gain a micro-view and assess the effectiveness of each component of the complex system; by cumulating the result of all the evaluations (in total 43 people were involved) it was possible to build a macro-view of how cross-language retrieval would impact on users and their tasks. By showing the richness of results that can be acquired, this paper aims at stimulating researchers into considering user-centred evaluations as a flexible, adaptable and comprehensive technique for investigating non-traditional information access systems.
    Source
    Information processing and management. 44(2008) no.1, S.22-38
  11. Iivonen, M.: Consistency in the selection of search concepts and search terms (1995) 0.02
    0.024192145 = product of:
      0.036288217 = sum of:
        0.016003672 = weight(_text_:on in 1757) [ClassicSimilarity], result of:
          0.016003672 = score(doc=1757,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 1757, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1757)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 1757) [ClassicSimilarity], result of:
              0.040569093 = score(doc=1757,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 1757, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1757)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Considers intersearcher and intrasearcher consistency in the selection of search terms. Based on an empirical study where 22 searchers from 4 different types of search environments analyzed altogether 12 search requests of 4 different types in 2 separate test situations between which 2 months elapsed. Statistically very significant differences in consistency were found according to the types of search environments and search requests. Consistency was also considered according to the extent of the scope of search concept. At level I search terms were compared character by character. At level II different search terms were accepted as the same search concept with a rather simple evaluation of linguistic expressions. At level III, in addition to level II, the hierarchical approach of the search request was also controlled. At level IV different search terms were accepted as the same search concept with a broad interpretation of the search concept. Both intersearcher and intrasearcher consistency grew most immediately after a rather simple evaluation of linguistic impressions
  12. Sievert, M.E.; McKinin, E.J.: Why full-text misses some relevant documents : an analysis of documents not retrieved by CCML or MEDIS (1989) 0.02
    0.024192145 = product of:
      0.036288217 = sum of:
        0.016003672 = weight(_text_:on in 3564) [ClassicSimilarity], result of:
          0.016003672 = score(doc=3564,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 3564, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3564)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 3564) [ClassicSimilarity], result of:
              0.040569093 = score(doc=3564,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 3564, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3564)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Searches conducted as part of the MEDLINE/Full-Text Research Project revealed that the full-text data bases of clinical medical journal articles (CCML (Comprehensive Core Medical Library) from BRS Information Technologies, and MEDIS from Mead Data Central) did not retrieve all the relevant citations. An analysis of the data indicated that 204 relevant citations were retrieved only by MEDLINE. A comparison of the strategies used on the full-text data bases with the text of the articles of these 204 citations revealed that 2 reasons contributed to these failure. The searcher often constructed a restrictive strategy which resulted in the loss of relevant documents; and as in other kinds of retrieval, the problems of natural language caused the loss of relevant documents.
    Date
    9. 1.1996 10:22:31
  13. Wood, F.; Ford, N.; Miller, D.; Sobczyk, G.; Duffin, R.: Information skills, searching behaviour and cognitive styles for student-centred learning : a computer-assisted learning approach (1996) 0.02
    0.024192145 = product of:
      0.036288217 = sum of:
        0.016003672 = weight(_text_:on in 4341) [ClassicSimilarity], result of:
          0.016003672 = score(doc=4341,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 4341, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=4341)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 4341) [ClassicSimilarity], result of:
              0.040569093 = score(doc=4341,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 4341, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4341)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Undergraduates were tested to establish how they searched databases, the effectiveness of their searches and their satisfaction with them. The students' cognitive and learning styles were determined by the Lancaster Approaches to Studying Inventory and Riding's Cognitive Styles Analysis tests. There were significant differences in the searching behaviour and the effectiveness of the searches carried out by students with different learning and cognitive styles. Computer-assisted learning (CAL) packages were developed for three departments. The effectiveness of the packages were evaluated. Significant differences were found in the ways students with different learning styles used the packages. Based on the experience gained, guidelines for the teaching of information skills and the production and use of packages were prepared. About 2/3 of the searches had serious weaknesses, indicating a need for effective training. It appears that choice of searching strategies, search effectiveness and use of CAL packages are all affected by the cognitive and learning styles of the searcher. Therefore, students should be made aware of their own styles and, if appropriate, how to adopt more effective strategies
    Source
    Journal of information science. 22(1996) no.2, S.79-92
  14. Crestani, F.; Rijsbergen, C.J. van: Information retrieval by imaging (1996) 0.02
    0.024192145 = product of:
      0.036288217 = sum of:
        0.016003672 = weight(_text_:on in 6967) [ClassicSimilarity], result of:
          0.016003672 = score(doc=6967,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.14580199 = fieldWeight in 6967, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=6967)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 6967) [ClassicSimilarity], result of:
              0.040569093 = score(doc=6967,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 6967, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6967)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Explains briefly what constitutes the imaging process and explains how imaging can be used in information retrieval. Proposes an approach based on the concept of: 'a term is a possible world'; which enables the exploitation of term to term relationships which are estimated using an information theoretic measure. Reports results of an evaluation exercise to compare the performance of imaging retrieval, using possible world semantics, with a benchmark and using the Cranfield 2 document collection to measure precision and recall. Initially, the performance imaging retrieval was seen to be better but statistical analysis proved that the difference was not significant. The problem with imaging retrieval lies in the amount of computations needed to be performed at run time and a later experiement investigated the possibility of reducing this amount. Notes lines of further investigation
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon
  15. Chu, H.: Factors affecting relevance judgment : a report from TREC Legal track (2011) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 4540) [ClassicSimilarity], result of:
          0.01886051 = score(doc=4540,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 4540, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4540)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 4540) [ClassicSimilarity], result of:
              0.03380758 = score(doc=4540,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 4540, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4540)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - This study intends to identify factors that affect relevance judgment of retrieved information as part of the 2007 TREC Legal track interactive task. Design/methodology/approach - Data were gathered and analyzed from the participants of the 2007 TREC Legal track interactive task using a questionnaire which includes not only a list of 80 relevance factors identified in prior research, but also a space for expressing their thoughts on relevance judgment in the process. Findings - This study finds that topicality remains a primary criterion, out of various options, for determining relevance, while specificity of the search request, task, or retrieved results also helps greatly in relevance judgment. Research limitations/implications - Relevance research should focus on the topicality and specificity of what is being evaluated as well as conducted in real environments. Practical implications - If multiple relevance factors are presented to assessors, the total number in a list should be below ten to take account of the limited processing capacity of human beings' short-term memory. Otherwise, the assessors might either completely ignore or inadequately consider some of the relevance factors when making judgment decisions. Originality/value - This study presents a method for reducing the artificiality of relevance research design, an apparent limitation in many related studies. Specifically, relevance judgment was made in this research as part of the 2007 TREC Legal track interactive task rather than a study devised for the sake of it. The assessors also served as searchers so that their searching experience would facilitate their subsequent relevance judgments.
    Date
    12. 7.2011 18:29:22
  16. Ravana, S.D.; Taheri, M.S.; Rajagopal, P.: Document-based approach to improve the accuracy of pairwise comparison in evaluating information retrieval systems (2015) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 2587) [ClassicSimilarity], result of:
          0.01886051 = score(doc=2587,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 2587, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2587)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 2587) [ClassicSimilarity], result of:
              0.03380758 = score(doc=2587,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 2587, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2587)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose The purpose of this paper is to propose a method to have more accurate results in comparing performance of the paired information retrieval (IR) systems with reference to the current method, which is based on the mean effectiveness scores of the systems across a set of identified topics/queries. Design/methodology/approach Based on the proposed approach, instead of the classic method of using a set of topic scores, the documents level scores are considered as the evaluation unit. These document scores are the defined document's weight, which play the role of the mean average precision (MAP) score of the systems as a significance test's statics. The experiments were conducted using the TREC 9 Web track collection. Findings The p-values generated through the two types of significance tests, namely the Student's t-test and Mann-Whitney show that by using the document level scores as an evaluation unit, the difference between IR systems is more significant compared with utilizing topic scores. Originality/value Utilizing a suitable test collection is a primary prerequisite for IR systems comparative evaluation. However, in addition to reusable test collections, having an accurate statistical testing is a necessity for these evaluations. The findings of this study will assist IR researchers to evaluate their retrieval systems and algorithms more accurately.
    Date
    20. 1.2015 18:30:22
  17. Larsen, B.; Ingwersen, P.; Lund, B.: Data fusion according to the principle of polyrepresentation (2009) 0.02
    0.02324084 = product of:
      0.03486126 = sum of:
        0.021338228 = weight(_text_:on in 2752) [ClassicSimilarity], result of:
          0.021338228 = score(doc=2752,freq=8.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.19440265 = fieldWeight in 2752, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.03125 = fieldNorm(doc=2752)
        0.013523032 = product of:
          0.027046064 = sum of:
            0.027046064 = weight(_text_:22 in 2752) [ClassicSimilarity], result of:
              0.027046064 = score(doc=2752,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.15476047 = fieldWeight in 2752, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2752)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    We report data fusion experiments carried out on the four best-performing retrieval models from TREC 5. Three were conceptually/algorithmically very different from one another; one was algorithmically similar to one of the former. The objective of the test was to observe the performance of the 11 logical data fusion combinations compared to the performance of the four individual models and their intermediate fusions when following the principle of polyrepresentation. This principle is based on cognitive IR perspective (Ingwersen & Järvelin, 2005) and implies that each retrieval model is regarded as a representation of a unique interpretation of information retrieval (IR). It predicts that only fusions of very different, but equally good, IR models may outperform each constituent as well as their intermediate fusions. Two kinds of experiments were carried out. One tested restricted fusions, which entails that only the inner disjoint overlap documents between fused models are ranked. The second set of experiments was based on traditional data fusion methods. The experiments involved the 30 TREC 5 topics that contain more than 44 relevant documents. In all tests, the Borda and CombSUM scoring methods were used. Performance was measured by precision and recall, with document cutoff values (DCVs) at 100 and 15 documents, respectively. Results show that restricted fusions made of two, three, or four cognitively/algorithmically very different retrieval models perform significantly better than do the individual models at DCV100. At DCV15, however, the results of polyrepresentative fusion were less predictable. The traditional fusion method based on polyrepresentation principles demonstrates a clear picture of performance at both DCV levels and verifies the polyrepresentation predictions for data fusion in IR. Data fusion improves retrieval performance over their constituent IR models only if the models all are quite conceptually/algorithmically dissimilar and equally and well performing, in that order of importance.
    Date
    22. 3.2009 18:48:28
  18. Belkin, N.J.: ¬An overview of results from Rutgers' investigations of interactive information retrieval (1998) 0.02
    0.020160122 = product of:
      0.030240182 = sum of:
        0.013336393 = weight(_text_:on in 2339) [ClassicSimilarity], result of:
          0.013336393 = score(doc=2339,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.121501654 = fieldWeight in 2339, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2339)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 2339) [ClassicSimilarity], result of:
              0.03380758 = score(doc=2339,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 2339, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2339)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    22. 9.1997 19:16:05
    Source
    Visualizing subject access for 21st century information resources: Papers presented at the 1997 Clinic on Library Applications of Data Processing, 2-4 Mar 1997, Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign. Ed.: P.A. Cochrane et al
  19. Wildemuth, B.; Freund, L.; Toms, E.G.: Untangling search task complexity and difficulty in the context of interactive information retrieval studies (2014) 0.02
    0.020160122 = product of:
      0.030240182 = sum of:
        0.013336393 = weight(_text_:on in 1786) [ClassicSimilarity], result of:
          0.013336393 = score(doc=1786,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.121501654 = fieldWeight in 1786, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1786)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 1786) [ClassicSimilarity], result of:
              0.03380758 = score(doc=1786,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 1786, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1786)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - One core element of interactive information retrieval (IIR) experiments is the assignment of search tasks. The purpose of this paper is to provide an analytical review of current practice in developing those search tasks to test, observe or control task complexity and difficulty. Design/methodology/approach - Over 100 prior studies of IIR were examined in terms of how each defined task complexity and/or difficulty (or related concepts) and subsequently interpreted those concepts in the development of the assigned search tasks. Findings - Search task complexity is found to include three dimensions: multiplicity of subtasks or steps, multiplicity of facets, and indeterminability. Search task difficulty is based on an interaction between the search task and the attributes of the searcher or the attributes of the search situation. The paper highlights the anomalies in our use of these two concepts, concluding with suggestions for future methodological research related to search task complexity and difficulty. Originality/value - By analyzing and synthesizing current practices, this paper provides guidance for future experiments in IIR that involve these two constructs.
    Date
    6. 4.2015 19:31:22
  20. Rajagopal, P.; Ravana, S.D.; Koh, Y.S.; Balakrishnan, V.: Evaluating the effectiveness of information retrieval systems using effort-based relevance judgment (2019) 0.02
    0.020160122 = product of:
      0.030240182 = sum of:
        0.013336393 = weight(_text_:on in 5287) [ClassicSimilarity], result of:
          0.013336393 = score(doc=5287,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.121501654 = fieldWeight in 5287, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5287)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 5287) [ClassicSimilarity], result of:
              0.03380758 = score(doc=5287,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 5287, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5287)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose The effort in addition to relevance is a major factor for satisfaction and utility of the document to the actual user. The purpose of this paper is to propose a method in generating relevance judgments that incorporate effort without human judges' involvement. Then the study determines the variation in system rankings due to low effort relevance judgment in evaluating retrieval systems at different depth of evaluation. Design/methodology/approach Effort-based relevance judgments are generated using a proposed boxplot approach for simple document features, HTML features and readability features. The boxplot approach is a simple yet repeatable approach in classifying documents' effort while ensuring outlier scores do not skew the grading of the entire set of documents. Findings The retrieval systems evaluation using low effort relevance judgments has a stronger influence on shallow depth of evaluation compared to deeper depth. It is proved that difference in the system rankings is due to low effort documents and not the number of relevant documents. Originality/value Hence, it is crucial to evaluate retrieval systems at shallow depth using low effort relevance judgments.
    Date
    20. 1.2015 18:30:22

Languages

Types

  • a 222
  • s 10
  • m 6
  • el 3
  • r 1
  • More… Less…