Search (59 results, page 1 of 3)

  • × type_ss:"el"
  • × theme_ss:"Semantic Web"
  1. Martínez-González, M.M.; Alvite-Díez, M.L.: Thesauri and Semantic Web : discussion of the evolution of thesauri toward their integration with the Semantic Web (2019) 0.04
    0.044642597 = product of:
      0.066963896 = sum of:
        0.013336393 = weight(_text_:on in 5997) [ClassicSimilarity], result of:
          0.013336393 = score(doc=5997,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.121501654 = fieldWeight in 5997, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5997)
        0.053627502 = product of:
          0.107255004 = sum of:
            0.107255004 = weight(_text_:demand in 5997) [ClassicSimilarity], result of:
              0.107255004 = score(doc=5997,freq=2.0), product of:
                0.31127608 = queryWeight, product of:
                  6.237302 = idf(docFreq=234, maxDocs=44218)
                  0.04990557 = queryNorm
                0.3445655 = fieldWeight in 5997, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.237302 = idf(docFreq=234, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5997)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Thesauri are Knowledge Organization Systems (KOS), that arise from the consensus of wide communities. They have been in use for many years and are regularly updated. Whereas in the past thesauri were designed for information professionals for indexing and searching, today there is a demand for conceptual vocabularies that enable inferencing by machines. The development of the Semantic Web has brought a new opportunity for thesauri, but thesauri also face the challenge of proving that they add value to it. The evolution of thesauri toward their integration with the Semantic Web is examined. Elements and structures in the thesaurus standard, ISO 25964, and SKOS (Simple Knowledge Organization System), the Semantic Web standard for representing KOS, are reviewed and compared. Moreover, the integrity rules of thesauri are contrasted with the axioms of SKOS. How SKOS has been applied to represent some real thesauri is taken into account. Three thesauri are chosen for this aim: AGROVOC, EuroVoc and the UNESCO Thesaurus. Based on the results of this comparison and analysis, the benefits that Semantic Web technologies offer to thesauri, how thesauri can contribute to the Semantic Web, and the challenges that would help to improve their integration with the Semantic Web are discussed.
  2. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.04
    0.03733623 = product of:
      0.05600434 = sum of:
        0.032339036 = weight(_text_:on in 759) [ClassicSimilarity], result of:
          0.032339036 = score(doc=759,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.29462588 = fieldWeight in 759, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=759)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.04733061 = score(doc=759,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
  3. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.03
    0.028611436 = product of:
      0.042917155 = sum of:
        0.02263261 = weight(_text_:on in 4649) [ClassicSimilarity], result of:
          0.02263261 = score(doc=4649,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 4649, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=4649)
        0.020284547 = product of:
          0.040569093 = sum of:
            0.040569093 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.040569093 = score(doc=4649,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    More and more cultural heritage institutions publish their collections, vocabularies and metadata on the Web. The resulting Web of linked cultural data opens up exciting new possibilities for searching and browsing through these cultural heritage collections. We report on ongoing work in which we investigate the estimation of relevance in this Web of Culture. We study existing measures of semantic distance and how they apply to two use cases. The use cases relate to the structured, multilingual and multimodal nature of the Culture Web. We distinguish between measures using the Web, such as Google distance and PMI, and measures using the Linked Data Web, i.e. the semantic structure of metadata vocabularies. We perform a small study in which we compare these semantic distance measures to human judgements of relevance. Although it is too early to draw any definitive conclusions, the study provides new insights into the applicability of semantic distance measures to the Web of Culture, and clear starting points for further research.
    Date
    26.12.2011 13:40:22
  4. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.03
    0.02822417 = product of:
      0.042336255 = sum of:
        0.01867095 = weight(_text_:on in 4330) [ClassicSimilarity], result of:
          0.01867095 = score(doc=4330,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.17010231 = fieldWeight in 4330, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4330)
        0.023665305 = product of:
          0.04733061 = sum of:
            0.04733061 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.04733061 = score(doc=4330,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    12. 2.2011 17:35:22
  5. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 4553) [ClassicSimilarity], result of:
          0.01886051 = score(doc=4553,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 4553, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4553)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.03380758 = score(doc=4553,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
  6. Dextre Clarke, S.G.: Challenges and opportunities for KOS standards (2007) 0.02
    0.01577687 = product of:
      0.04733061 = sum of:
        0.04733061 = product of:
          0.09466122 = sum of:
            0.09466122 = weight(_text_:22 in 4643) [ClassicSimilarity], result of:
              0.09466122 = score(doc=4643,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.5416616 = fieldWeight in 4643, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4643)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.2007 15:41:14
  7. Glimm, B.; Hogan, A.; Krötzsch, M.; Polleres, A.: OWL: Yet to arrive on the Web of Data? (2012) 0.02
    0.015088407 = product of:
      0.04526522 = sum of:
        0.04526522 = weight(_text_:on in 4798) [ClassicSimilarity], result of:
          0.04526522 = score(doc=4798,freq=16.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.4123903 = fieldWeight in 4798, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=4798)
      0.33333334 = coord(1/3)
    
    Abstract
    Seven years on from OWL becoming a W3C recommendation, and two years on from the more recent OWL 2 W3C recommendation, OWL has still experienced only patchy uptake on the Web. Although certain OWL features (like owl:sameAs) are very popular, other features of OWL are largely neglected by publishers in the Linked Data world. This may suggest that despite the promise of easy implementations and the proposal of tractable profiles suggested in OWL's second version, there is still no "right" standard fragment for the Linked Data community. In this paper, we (1) analyse uptake of OWL on the Web of Data, (2) gain insights into the OWL fragment that is actually used/usable on the Web, where we arrive at the conclusion that this fragment is likely to be a simplified profile based on OWL RL, (3) propose and discuss such a new fragment, which we call OWL LD (for Linked Data).
    Content
    Beitrag des Workshops: Linked Data on the Web (LDOW2012), April 16, 2012 Lyon, France; vgl.: http://events.linkeddata.org/ldow2012/.
  8. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.01
    0.013523031 = product of:
      0.040569093 = sum of:
        0.040569093 = product of:
          0.081138186 = sum of:
            0.081138186 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.081138186 = score(doc=6048,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.2007 15:41:14
  9. Tudhope, D.: Knowledge Organization System Services : brief review of NKOS activities and possibility of KOS registries (2007) 0.01
    0.013523031 = product of:
      0.040569093 = sum of:
        0.040569093 = product of:
          0.081138186 = sum of:
            0.081138186 = weight(_text_:22 in 100) [ClassicSimilarity], result of:
              0.081138186 = score(doc=100,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.46428138 = fieldWeight in 100, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=100)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.2007 15:41:14
  10. Bizer, C.; Cyganiak, R.; Heath, T.: How to publish Linked Data on the Web (2007) 0.01
    0.0124473 = product of:
      0.0373419 = sum of:
        0.0373419 = weight(_text_:on in 3791) [ClassicSimilarity], result of:
          0.0373419 = score(doc=3791,freq=8.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.34020463 = fieldWeight in 3791, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3791)
      0.33333334 = coord(1/3)
    
    Abstract
    This document provides a tutorial on how to publish Linked Data on the Web. After a general overview of the concept of Linked Data, we describe several practical recipes for publishing information as Linked Data on the Web.
  11. Hyvönen, E.; Leskinen, P.; Tamper, M.; Keravuori, K.; Rantala, H.; Ikkala, E.; Tuominen, J.: BiographySampo - publishing and enriching biographies on the Semantic Web for digital humanities research (2019) 0.01
    0.0108891195 = product of:
      0.032667357 = sum of:
        0.032667357 = weight(_text_:on in 5799) [ClassicSimilarity], result of:
          0.032667357 = score(doc=5799,freq=12.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.29761705 = fieldWeight in 5799, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5799)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper argues for making a paradigm shift in publishing and using biographical dictionaries on the web, based on Linked Data. The idea is to provide the user with enhanced reading experience of biographies by enriching contents with data linking and reasoning. In addition, versatile tooling for 1) biographical research of individual persons as well as for 2) prosopographical research on groups of people are provided. To demonstrate and evaluate the new possibilities,we present the semantic portal "BiographySampo - Finnish Biographies on theSemantic Web". The system is based on a knowledge graph extracted automatically from a collection of 13.100 textual biographies, enriched with data linking to 16 external data sources, and by harvesting external collection data from libraries, museums, and archives. The portal was released in September 2018 for free public use at: http://biografiasampo.fi.
  12. Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z.: DBpedia: a nucleus for a Web of open data (2007) 0.01
    0.010669115 = product of:
      0.032007344 = sum of:
        0.032007344 = weight(_text_:on in 4260) [ClassicSimilarity], result of:
          0.032007344 = score(doc=4260,freq=8.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.29160398 = fieldWeight in 4260, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=4260)
      0.33333334 = coord(1/3)
    
    Abstract
    DBpedia is a community effort to extract structured information from Wikipedia and to make this information available on the Web. DBpedia allows you to ask sophisticated queries against datasets derived from Wikipedia and to link other datasets on the Web to Wikipedia data. We describe the extraction of the DBpedia datasets, and how the resulting information is published on the Web for human- and machineconsumption. We describe some emerging applications from the DBpedia community and show how website authors can facilitate DBpedia content within their sites. Finally, we present the current status of interlinking DBpedia with other open datasets on the Web and outline how DBpedia could serve as a nucleus for an emerging Web of open data.
  13. Zhang, L.; Liu, Q.L.; Zhang, J.; Wang, H.F.; Pan, Y.; Yu, Y.: Semplore: an IR approach to scalable hybrid query of Semantic Web data (2007) 0.01
    0.009940362 = product of:
      0.029821085 = sum of:
        0.029821085 = weight(_text_:on in 231) [ClassicSimilarity], result of:
          0.029821085 = score(doc=231,freq=10.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.271686 = fieldWeight in 231, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=231)
      0.33333334 = coord(1/3)
    
    Abstract
    As an extension to the current Web, Semantic Web will not only contain structured data with machine understandable semantics but also textual information. While structured queries can be used to find information more precisely on the Semantic Web, keyword searches are still needed to help exploit textual information. It thus becomes very important that we can combine precise structured queries with imprecise keyword searches to have a hybrid query capability. In addition, due to the huge volume of information on the Semantic Web, the hybrid query must be processed in a very scalable way. In this paper, we define such a hybrid query capability that combines unary tree-shaped structured queries with keyword searches. We show how existing information retrieval (IR) index structures and functions can be reused to index semantic web data and its textual information, and how the hybrid query is evaluated on the index structure using IR engines in an efficient and scalable manner. We implemented this IR approach in an engine called Semplore. Comprehensive experiments on its performance show that it is a promising approach. It leads us to believe that it may be possible to evolve current web search engines to query and search the Semantic Web. Finally, we briefy describe how Semplore is used for searching Wikipedia and an IBM customer's product information.
    Source
    Proceeding ISWC'07/ASWC'07 : Proceedings of the 6th international The semantic web and 2nd Asian conference on Asian semantic web conference. Ed.: K. Aberer et al
  14. Mirizzi, R.; Noia, T. Di: From exploratory search to Web Search and back (2010) 0.01
    0.009239726 = product of:
      0.027719175 = sum of:
        0.027719175 = weight(_text_:on in 4802) [ClassicSimilarity], result of:
          0.027719175 = score(doc=4802,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.25253648 = fieldWeight in 4802, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=4802)
      0.33333334 = coord(1/3)
    
    Abstract
    The power of search is with no doubt one of the main aspects for the success of the Web. Currently available search engines on the Web allow to return results with a high precision. Nevertheless, if we limit our attention only to lookup search we are missing another important search task. In exploratory search, the user is willing not only to find documents relevant with respect to her query but she is also interested in learning, discovering and understanding novel knowledge on complex and sometimes unknown topics. In the paper we address this issue presenting LED, a web based system that aims to improve (lookup) Web search by enabling users to properly explore knowledge associated to her query. We rely on DBpedia to explore the semantics of keywords within the query thus suggesting potentially interesting related topics/keywords to the user.
  15. Eckert, K.: SKOS: eine Sprache für die Übertragung von Thesauri ins Semantic Web (2011) 0.01
    0.009015355 = product of:
      0.027046064 = sum of:
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 4331) [ClassicSimilarity], result of:
              0.054092128 = score(doc=4331,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 4331, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4331)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    15. 3.2011 19:21:22
  16. OWL Web Ontology Language Test Cases (2004) 0.01
    0.009015355 = product of:
      0.027046064 = sum of:
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.054092128 = score(doc=4685,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    14. 8.2011 13:33:22
  17. Sánchez, M.F.: Semantically enhanced Information Retrieval : an ontology-based approach (2006) 0.01
    0.008890929 = product of:
      0.026672786 = sum of:
        0.026672786 = weight(_text_:on in 4327) [ClassicSimilarity], result of:
          0.026672786 = score(doc=4327,freq=2.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24300331 = fieldWeight in 4327, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.078125 = fieldNorm(doc=4327)
      0.33333334 = coord(1/3)
    
    Content
    Part I. Analyzing the state of the art - What is semantic search? Part II. The proposal - An ontology-based IR model - Semantic retrieval on the Web Part III. Extensions - Semantic knowledge gateway - Coping with knowledge incompleteness
  18. Baker, T.; Bermès, E.; Coyle, K.; Dunsire, G.; Isaac, A.; Murray, P.; Panzer, M.; Schneider, J.; Singer, R.; Summers, E.; Waites, W.; Young, J.; Zeng, M.: Library Linked Data Incubator Group Final Report (2011) 0.01
    0.008711295 = product of:
      0.026133886 = sum of:
        0.026133886 = weight(_text_:on in 4796) [ClassicSimilarity], result of:
          0.026133886 = score(doc=4796,freq=12.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.23809364 = fieldWeight in 4796, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.03125 = fieldNorm(doc=4796)
      0.33333334 = coord(1/3)
    
    Abstract
    The mission of the W3C Library Linked Data Incubator Group, chartered from May 2010 through August 2011, has been "to help increase global interoperability of library data on the Web, by bringing together people involved in Semantic Web activities - focusing on Linked Data - in the library community and beyond, building on existing initiatives, and identifying collaboration tracks for the future." In Linked Data [LINKEDDATA], data is expressed using standards such as Resource Description Framework (RDF) [RDF], which specifies relationships between things, and Uniform Resource Identifiers (URIs, or "Web addresses") [URI]. This final report of the Incubator Group examines how Semantic Web standards and Linked Data principles can be used to make the valuable information assets that library create and curate - resources such as bibliographic data, authorities, and concept schemes - more visible and re-usable outside of their original library context on the wider Web. The Incubator Group began by eliciting reports on relevant activities from parties ranging from small, independent projects to national library initiatives (see the separate report, Library Linked Data Incubator Group: Use Cases) [USECASE]. These use cases provided the starting point for the work summarized in the report: an analysis of the benefits of library Linked Data, a discussion of current issues with regard to traditional library data, existing library Linked Data initiatives, and legal rights over library data; and recommendations for next steps. The report also summarizes the results of a survey of current Linked Data technologies and an inventory of library Linked Data resources available today (see also the more detailed report, Library Linked Data Incubator Group: Datasets, Value Vocabularies, and Metadata Element Sets) [VOCABDATASET].
    Key recommendations of the report are: - That library leaders identify sets of data as possible candidates for early exposure as Linked Data and foster a discussion about Open Data and rights; - That library standards bodies increase library participation in Semantic Web standardization, develop library data standards that are compatible with Linked Data, and disseminate best-practice design patterns tailored to library Linked Data; - That data and systems designers design enhanced user services based on Linked Data capabilities, create URIs for the items in library datasets, develop policies for managing RDF vocabularies and their URIs, and express library data by re-using or mapping to existing Linked Data vocabularies; - That librarians and archivists preserve Linked Data element sets and value vocabularies and apply library experience in curation and long-term preservation to Linked Data datasets.
  19. Singh, A.; Sinha, U.; Sharma, D.k.: Semantic Web and data visualization (2020) 0.01
    0.008711295 = product of:
      0.026133886 = sum of:
        0.026133886 = weight(_text_:on in 79) [ClassicSimilarity], result of:
          0.026133886 = score(doc=79,freq=12.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.23809364 = fieldWeight in 79, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.03125 = fieldNorm(doc=79)
      0.33333334 = coord(1/3)
    
    Abstract
    With the terrific growth of data volume and data being produced every second on millions of devices across the globe, there is a desperate need to manage the unstructured data available on web pages efficiently. Semantic Web or also known as Web of Trust structures the scattered data on the Internet according to the needs of the user. It is an extension of the World Wide Web (WWW) which focuses on manipulating web data on behalf of Humans. Due to the ability of the Semantic Web to integrate data from disparate sources and hence makes it more user-friendly, it is an emerging trend. Tim Berners-Lee first introduced the term Semantic Web and since then it has come a long way to become a more intelligent and intuitive web. Data Visualization plays an essential role in explaining complex concepts in a universal manner through pictorial representation, and the Semantic Web helps in broadening the potential of Data Visualization and thus making it an appropriate combination. The objective of this chapter is to provide fundamental insights concerning the semantic web technologies and in addition to that it also elucidates the issues as well as the solutions regarding the semantic web. The purpose of this chapter is to highlight the semantic web architecture in detail while also comparing it with the traditional search system. It classifies the semantic web architecture into three major pillars i.e. RDF, Ontology, and XML. Moreover, it describes different semantic web tools used in the framework and technology. It attempts to illustrate different approaches of the semantic web search engines. Besides stating numerous challenges faced by the semantic web it also illustrates the solutions.
    Series
    Lecture notes on data engineering and communications technologies book series; vol.32
  20. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.01
    0.008014175 = product of:
      0.024042524 = sum of:
        0.024042524 = weight(_text_:on in 4232) [ClassicSimilarity], result of:
          0.024042524 = score(doc=4232,freq=26.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.21904023 = fieldWeight in 4232, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
      0.33333334 = coord(1/3)
    
    Abstract
    After the launch of the World Wide Web, it became clear that searching documentson the Web would not be trivial. Well-known engines to search the web, like Google, focus on search in web documents using keywords. The documents are structured and indexed to ensure keywords match documents as accurately as possible. However, searching by keywords does not always suice. It is oen the case that users do not know exactly how to formulate the search query or which keywords guarantee retrieving the most relevant documents. Besides that, it occurs that users rather want to browse information than looking up something specific. It turned out that there is need for systems that enable more interactivity and facilitate the gradual refinement of search queries to explore the Web. Users expect more from the Web because the short keyword-based queries they pose during search, do not suffice for all cases. On top of that, the Web is changing structurally. The Web comprises, apart from a collection of documents, more and more linked data, pieces of information structured so they can be processed by machines. The consequently applied semantics allow users to exactly indicate machines their search intentions. This is made possible by describing data following controlled vocabularies, concept lists composed by experts, published uniquely identifiable on the Web. Even so, it is still not trivial to explore data on the Web. There is a large variety of vocabularies and various data sources use different terms to identify the same concepts.
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. eries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research.
    Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data. There is a difference in the way users interact with resources, visually or textually, and how resources are represented for machines to be processed by algorithms. This difference complicates bridging the users' intents and machine executable queries. It is important to implement this 'translation' mechanism to impact the search as favorable as possible in terms of performance, complexity and accuracy. To do this, we explain a second technique, that supports such a bridging component. Our second technique is developed around three features that support the search process: looking up, relating and ranking resources. The main goal is to ensure that resources in the results are as precise and relevant as possible. During the evaluation of this technique, we did not only look at the precision of the search results but also investigated how the effectiveness of the search evolved while the user executed certain actions sequentially.
    When we speak about finding relationships between resources, it is necessary to dive deeper in the structure. The graph structure of linked data where the semantics give meaning to the relationships between resources enable the execution of pathfinding algorithms. The assigned weights and heuristics are base components of such algorithms and ultimately define (the order) which resources are included in a path. These paths explain indirect connections between resources. Our third technique proposes an algorithm that optimizes the choice of resources in terms of serendipity. Some optimizations guard the consistence of candidate-paths where the coherence of consecutive connections is maximized to avoid trivial and too arbitrary paths. The implementation uses the A* algorithm, the de-facto reference when it comes to heuristically optimized minimal cost paths. The effectiveness of paths was measured based on common automatic metrics and surveys where the users could indicate their preference for paths, generated each time in a different way. Finally, all our techniques are applied to a use case about publications in digital libraries where they are aligned with information about scientific conferences and researchers. The application to this use case is a practical example because the different aspects of exploratory search come together. In fact, the techniques also evolved from the experiences when implementing the use case. Practical details about the semantic model are explained and the implementation of the search system is clarified module by module. The evaluation positions the result, a prototype of a tool to explore scientific publications, researchers and conferences next to some important alternatives.

Years

Languages

  • e 57
  • d 2
  • More… Less…

Types