Search (32 results, page 1 of 2)

  • × year_i:[2020 TO 2030}
  • × theme_ss:"Computerlinguistik"
  1. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.03
    0.02642109 = product of:
      0.07926327 = sum of:
        0.07926327 = product of:
          0.23778981 = sum of:
            0.23778981 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.23778981 = score(doc=862,freq=2.0), product of:
                0.42309996 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.04990557 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
  2. Luo, L.; Ju, J.; Li, Y.-F.; Haffari, G.; Xiong, B.; Pan, S.: ChatRule: mining logical rules with large language models for knowledge graph reasoning (2023) 0.02
    0.023842867 = product of:
      0.0357643 = sum of:
        0.01886051 = weight(_text_:on in 1171) [ClassicSimilarity], result of:
          0.01886051 = score(doc=1171,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.1718293 = fieldWeight in 1171, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1171)
        0.01690379 = product of:
          0.03380758 = sum of:
            0.03380758 = weight(_text_:22 in 1171) [ClassicSimilarity], result of:
              0.03380758 = score(doc=1171,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.19345059 = fieldWeight in 1171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1171)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Logical rules are essential for uncovering the logical connections between relations, which could improve the reasoning performance and provide interpretable results on knowledge graphs (KGs). Although there have been many efforts to mine meaningful logical rules over KGs, existing methods suffer from the computationally intensive searches over the rule space and a lack of scalability for large-scale KGs. Besides, they often ignore the semantics of relations which is crucial for uncovering logical connections. Recently, large language models (LLMs) have shown impressive performance in the field of natural language processing and various applications, owing to their emergent ability and generalizability. In this paper, we propose a novel framework, ChatRule, unleashing the power of large language models for mining logical rules over knowledge graphs. Specifically, the framework is initiated with an LLM-based rule generator, leveraging both the semantic and structural information of KGs to prompt LLMs to generate logical rules. To refine the generated rules, a rule ranking module estimates the rule quality by incorporating facts from existing KGs. Last, a rule validator harnesses the reasoning ability of LLMs to validate the logical correctness of ranked rules through chain-of-thought reasoning. ChatRule is evaluated on four large-scale KGs, w.r.t. different rule quality metrics and downstream tasks, showing the effectiveness and scalability of our method.
    Date
    23.11.2023 19:07:22
  3. ¬Der Student aus dem Computer (2023) 0.02
    0.01577687 = product of:
      0.04733061 = sum of:
        0.04733061 = product of:
          0.09466122 = sum of:
            0.09466122 = weight(_text_:22 in 1079) [ClassicSimilarity], result of:
              0.09466122 = score(doc=1079,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.5416616 = fieldWeight in 1079, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1079)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    27. 1.2023 16:22:55
  4. Corbara, S.; Moreo, A.; Sebastiani, F.: Syllabic quantity patterns as rhythmic features for Latin authorship attribution (2023) 0.01
    0.011928434 = product of:
      0.0357853 = sum of:
        0.0357853 = weight(_text_:on in 846) [ClassicSimilarity], result of:
          0.0357853 = score(doc=846,freq=10.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.32602316 = fieldWeight in 846, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=846)
      0.33333334 = coord(1/3)
    
    Abstract
    It is well known that, within the Latin production of written text, peculiar metric schemes were followed not only in poetic compositions, but also in many prose works. Such metric patterns were based on so-called syllabic quantity, that is, on the length of the involved syllables, and there is substantial evidence suggesting that certain authors had a preference for certain metric patterns over others. In this research we investigate the possibility to employ syllabic quantity as a base for deriving rhythmic features for the task of computational authorship attribution of Latin prose texts. We test the impact of these features on the authorship attribution task when combined with other topic-agnostic features. Our experiments, carried out on three different datasets using support vector machines (SVMs) show that rhythmic features based on syllabic quantity are beneficial in discriminating among Latin prose authors.
  5. Zhai, X.: ChatGPT user experience: : implications for education (2022) 0.01
    0.0108891195 = product of:
      0.032667357 = sum of:
        0.032667357 = weight(_text_:on in 849) [ClassicSimilarity], result of:
          0.032667357 = score(doc=849,freq=12.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.29761705 = fieldWeight in 849, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=849)
      0.33333334 = coord(1/3)
    
    Abstract
    ChatGPT, a general-purpose conversation chatbot released on November 30, 2022, by OpenAI, is expected to impact every aspect of society. However, the potential impacts of this NLP tool on education remain unknown. Such impact can be enormous as the capacity of ChatGPT may drive changes to educational learning goals, learning activities, and assessment and evaluation practices. This study was conducted by piloting ChatGPT to write an academic paper, titled Artificial Intelligence for Education (see Appendix A). The piloting result suggests that ChatGPT is able to help researchers write a paper that is coherent, (partially) accurate, informative, and systematic. The writing is extremely efficient (2-3 hours) and involves very limited professional knowledge from the author. Drawing upon the user experience, I reflect on the potential impacts of ChatGPT, as well as similar AI tools, on education. The paper concludes by suggesting adjusting learning goals-students should be able to use AI tools to conduct subject-domain tasks and education should focus on improving students' creativity and critical thinking rather than general skills. To accomplish the learning goals, researchers should design AI-involved learning tasks to engage students in solving real-world problems. ChatGPT also raises concerns that students may outsource assessment tasks. This paper concludes that new formats of assessments are needed to focus on creativity and critical thinking that AI cannot substitute.
  6. Xiang, R.; Chersoni, E.; Lu, Q.; Huang, C.-R.; Li, W.; Long, Y.: Lexical data augmentation for sentiment analysis (2021) 0.01
    0.009940362 = product of:
      0.029821085 = sum of:
        0.029821085 = weight(_text_:on in 392) [ClassicSimilarity], result of:
          0.029821085 = score(doc=392,freq=10.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.271686 = fieldWeight in 392, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=392)
      0.33333334 = coord(1/3)
    
    Abstract
    Machine learning methods, especially deep learning models, have achieved impressive performance in various natural language processing tasks including sentiment analysis. However, deep learning models are more demanding for training data. Data augmentation techniques are widely used to generate new instances based on modifications to existing data or relying on external knowledge bases to address annotated data scarcity, which hinders the full potential of machine learning techniques. This paper presents our work using part-of-speech (POS) focused lexical substitution for data augmentation (PLSDA) to enhance the performance of machine learning algorithms in sentiment analysis. We exploit POS information to identify words to be replaced and investigate different augmentation strategies to find semantically related substitutions when generating new instances. The choice of POS tags as well as a variety of strategies such as semantic-based substitution methods and sampling methods are discussed in detail. Performance evaluation focuses on the comparison between PLSDA and two previous lexical substitution-based data augmentation methods, one of which is thesaurus-based, and the other is lexicon manipulation based. Our approach is tested on five English sentiment analysis benchmarks: SST-2, MR, IMDB, Twitter, and AirRecord. Hyperparameters such as the candidate similarity threshold and number of newly generated instances are optimized. Results show that six classifiers (SVM, LSTM, BiLSTM-AT, bidirectional encoder representations from transformers [BERT], XLNet, and RoBERTa) trained with PLSDA achieve accuracy improvement of more than 0.6% comparing to two previous lexical substitution methods averaged on five benchmarks. Introducing POS constraint and well-designed augmentation strategies can improve the reliability of lexical data augmentation methods. Consequently, PLSDA significantly improves the performance of sentiment analysis algorithms.
  7. Ali, C.B.; Haddad, H.; Slimani, Y.: Multi-word terms selection for information retrieval (2022) 0.01
    0.009940362 = product of:
      0.029821085 = sum of:
        0.029821085 = weight(_text_:on in 900) [ClassicSimilarity], result of:
          0.029821085 = score(doc=900,freq=10.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.271686 = fieldWeight in 900, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=900)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose A number of approaches and algorithms have been proposed over the years as a basis for automatic indexing. Many of these approaches suffer from precision inefficiency at low recall. The choice of indexing units has a great impact on search system effectiveness. The authors dive beyond simple terms indexing to propose a framework for multi-word terms (MWT) filtering and indexing. Design/methodology/approach In this paper, the authors rely on ranking MWT to filter them, keeping the most effective ones for the indexing process. The proposed model is based on filtering MWT according to their ability to capture the document topic and distinguish between different documents from the same collection. The authors rely on the hypothesis that the best MWT are those that achieve the greatest association degree. The experiments are carried out with English and French languages data sets. Findings The results indicate that this approach achieved precision enhancements at low recall, and it performed better than more advanced models based on terms dependencies. Originality/value Using and testing different association measures to select MWT that best describe the documents to enhance the precision in the first retrieved documents.
  8. Aydin, Ö.; Karaarslan, E.: OpenAI ChatGPT generated literature review: : digital twin in healthcare (2022) 0.01
    0.009409276 = product of:
      0.028227827 = sum of:
        0.028227827 = weight(_text_:on in 851) [ClassicSimilarity], result of:
          0.028227827 = score(doc=851,freq=14.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.25717056 = fieldWeight in 851, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.03125 = fieldNorm(doc=851)
      0.33333334 = coord(1/3)
    
    Abstract
    Literature review articles are essential to summarize the related work in the selected field. However, covering all related studies takes too much time and effort. This study questions how Artificial Intelligence can be used in this process. We used ChatGPT to create a literature review article to show the stage of the OpenAI ChatGPT artificial intelligence application. As the subject, the applications of Digital Twin in the health field were chosen. Abstracts of the last three years (2020, 2021 and 2022) papers were obtained from the keyword "Digital twin in healthcare" search results on Google Scholar and paraphrased by ChatGPT. Later on, we asked ChatGPT questions. The results are promising; however, the paraphrased parts had significant matches when checked with the Ithenticate tool. This article is the first attempt to show the compilation and expression of knowledge will be accelerated with the help of artificial intelligence. We are still at the beginning of such advances. The future academic publishing process will require less human effort, which in turn will allow academics to focus on their studies. In future studies, we will monitor citations to this study to evaluate the academic validity of the content produced by the ChatGPT. 1. Introduction OpenAI ChatGPT (ChatGPT, 2022) is a chatbot based on the OpenAI GPT-3 language model. It is designed to generate human-like text responses to user input in a conversational context. OpenAI ChatGPT is trained on a large dataset of human conversations and can be used to create responses to a wide range of topics and prompts. The chatbot can be used for customer service, content creation, and language translation tasks, creating replies in multiple languages. OpenAI ChatGPT is available through the OpenAI API, which allows developers to access and integrate the chatbot into their applications and systems. OpenAI ChatGPT is a variant of the GPT (Generative Pre-trained Transformer) language model developed by OpenAI. It is designed to generate human-like text, allowing it to engage in conversation with users naturally and intuitively. OpenAI ChatGPT is trained on a large dataset of human conversations, allowing it to understand and respond to a wide range of topics and contexts. It can be used in various applications, such as chatbots, customer service agents, and language translation systems. OpenAI ChatGPT is a state-of-the-art language model able to generate coherent and natural text that can be indistinguishable from text written by a human. As an artificial intelligence, ChatGPT may need help to change academic writing practices. However, it can provide information and guidance on ways to improve people's academic writing skills.
  9. Meng, K.; Ba, Z.; Ma, Y.; Li, G.: ¬A network coupling approach to detecting hierarchical linkages between science and technology (2024) 0.01
    0.009239726 = product of:
      0.027719175 = sum of:
        0.027719175 = weight(_text_:on in 1205) [ClassicSimilarity], result of:
          0.027719175 = score(doc=1205,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.25253648 = fieldWeight in 1205, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1205)
      0.33333334 = coord(1/3)
    
    Abstract
    Detecting science-technology hierarchical linkages is beneficial for understanding deep interactions between science and technology (S&T). Previous studies have mainly focused on linear linkages between S&T but ignored their structural linkages. In this paper, we propose a network coupling approach to inspect hierarchical interactions of S&T by integrating their knowledge linkages and structural linkages. S&T knowledge networks are first enhanced with bidirectional encoder representation from transformers (BERT) knowledge alignment, and then their hierarchical structures are identified based on K-core decomposition. Hierarchical coupling preferences and strengths of the S&T networks over time are further calculated based on similarities of coupling nodes' degree distribution and similarities of coupling edges' weight distribution. Extensive experimental results indicate that our approach is feasible and robust in identifying the coupling hierarchy with superior performance compared to other isomorphism and dissimilarity algorithms. Our research extends the mindset of S&T linkage measurement by identifying patterns and paths of the interaction of S&T hierarchical knowledge.
  10. Morris, V.: Automated language identification of bibliographic resources (2020) 0.01
    0.009015355 = product of:
      0.027046064 = sum of:
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 5749) [ClassicSimilarity], result of:
              0.054092128 = score(doc=5749,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 5749, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5749)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    2. 3.2020 19:04:22
  11. Bager, J.: ¬Die Text-KI ChatGPT schreibt Fachtexte, Prosa, Gedichte und Programmcode (2023) 0.01
    0.009015355 = product of:
      0.027046064 = sum of:
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 835) [ClassicSimilarity], result of:
              0.054092128 = score(doc=835,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=835)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    29.12.2022 18:22:55
  12. Rieger, F.: Lügende Computer (2023) 0.01
    0.009015355 = product of:
      0.027046064 = sum of:
        0.027046064 = product of:
          0.054092128 = sum of:
            0.054092128 = weight(_text_:22 in 912) [ClassicSimilarity], result of:
              0.054092128 = score(doc=912,freq=2.0), product of:
                0.1747608 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04990557 = queryNorm
                0.30952093 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    16. 3.2023 19:22:55
  13. Zhang, Y.; Zhang, C.; Li, J.: Joint modeling of characters, words, and conversation contexts for microblog keyphrase extraction (2020) 0.01
    0.008890929 = product of:
      0.026672786 = sum of:
        0.026672786 = weight(_text_:on in 5816) [ClassicSimilarity], result of:
          0.026672786 = score(doc=5816,freq=8.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.24300331 = fieldWeight in 5816, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5816)
      0.33333334 = coord(1/3)
    
    Abstract
    Millions of messages are produced on microblog platforms every day, leading to the pressing need for automatic identification of key points from the massive texts. To absorb salient content from the vast bulk of microblog posts, this article focuses on the task of microblog keyphrase extraction. In previous work, most efforts treat messages as independent documents and might suffer from the data sparsity problem exhibited in short and informal microblog posts. On the contrary, we propose to enrich contexts via exploiting conversations initialized by target posts and formed by their replies, which are generally centered around relevant topics to the target posts and therefore helpful for keyphrase identification. Concretely, we present a neural keyphrase extraction framework, which has 2 modules: a conversation context encoder and a keyphrase tagger. The conversation context encoder captures indicative representation from their conversation contexts and feeds the representation into the keyphrase tagger, and the keyphrase tagger extracts salient words from target posts. The 2 modules were trained jointly to optimize the conversation context encoding and keyphrase extraction processes. In the conversation context encoder, we leverage hierarchical structures to capture the word-level indicative representation and message-level indicative representation hierarchically. In both of the modules, we apply character-level representations, which enables the model to explore morphological features and deal with the out-of-vocabulary problem caused by the informal language style of microblog messages. Extensive comparison results on real-life data sets indicate that our model outperforms state-of-the-art models from previous studies.
  14. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D.M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever, I.; Amodei, D.: Language models are few-shot learners (2020) 0.01
    0.008711295 = product of:
      0.026133886 = sum of:
        0.026133886 = weight(_text_:on in 872) [ClassicSimilarity], result of:
          0.026133886 = score(doc=872,freq=12.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.23809364 = fieldWeight in 872, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.03125 = fieldNorm(doc=872)
      0.33333334 = coord(1/3)
    
    Abstract
    Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.
  15. Escolano, C.; Costa-Jussà, M.R.; Fonollosa, J.A.: From bilingual to multilingual neural-based machine translation by incremental training (2021) 0.01
    0.0076997704 = product of:
      0.02309931 = sum of:
        0.02309931 = weight(_text_:on in 97) [ClassicSimilarity], result of:
          0.02309931 = score(doc=97,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.21044704 = fieldWeight in 97, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=97)
      0.33333334 = coord(1/3)
    
    Abstract
    A common intermediate language representation in neural machine translation can be used to extend bilingual systems by incremental training. We propose a new architecture based on introducing an interlingual loss as an additional training objective. By adding and forcing this interlingual loss, we can train multiple encoders and decoders for each language, sharing among them a common intermediate representation. Translation results on the low-resource tasks (Turkish-English and Kazakh-English tasks) show a BLEU improvement of up to 2.8 points. However, results on a larger dataset (Russian-English and Kazakh-English) show BLEU losses of a similar amount. While our system provides improvements only for the low-resource tasks in terms of translation quality, our system is capable of quickly deploying new language pairs without the need to retrain the rest of the system, which may be a game changer in some situations. Specifically, what is most relevant regarding our architecture is that it is capable of: reducing the number of production systems, with respect to the number of languages, from quadratic to linear; incrementally adding a new language to the system without retraining the languages already there; and allowing for translations from the new language to all the others present in the system.
  16. Lee, G.E.; Sun, A.: Understanding the stability of medical concept embeddings (2021) 0.01
    0.0076997704 = product of:
      0.02309931 = sum of:
        0.02309931 = weight(_text_:on in 159) [ClassicSimilarity], result of:
          0.02309931 = score(doc=159,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.21044704 = fieldWeight in 159, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=159)
      0.33333334 = coord(1/3)
    
    Abstract
    Frequency is one of the major factors for training quality word embeddings. Several studies have recently discussed the stability of word embeddings in general domain and suggested factors influencing the stability. In this work, we conduct a detailed analysis on the stability of concept embeddings in medical domain, particularly in relations with concept frequency. The analysis reveals the surprising high stability of low-frequency concepts: low-frequency (<100) concepts have the same high stability as high-frequency (>1,000) concepts. To develop a deeper understanding of this finding, we propose a new factor, the noisiness of context words, which influences the stability of medical concept embeddings regardless of high or low frequency. We evaluate the proposed factor by showing the linear correlation with the stability of medical concept embeddings. The correlations are clear and consistent with various groups of medical concepts. Based on the linear relations, we make suggestions on ways to adjust the noisiness of context words for the improvement of stability. Finally, we demonstrate that the linear relation of the proposed factor extends to the word embedding stability in general domain.
  17. Andrushchenko, M.; Sandberg, K.; Turunen, R.; Marjanen, J.; Hatavara, M.; Kurunmäki, J.; Nummenmaa, T.; Hyvärinen, M.; Teräs, K.; Peltonen, J.; Nummenmaa, J.: Using parsed and annotated corpora to analyze parliamentarians' talk in Finland (2022) 0.01
    0.0076997704 = product of:
      0.02309931 = sum of:
        0.02309931 = weight(_text_:on in 471) [ClassicSimilarity], result of:
          0.02309931 = score(doc=471,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.21044704 = fieldWeight in 471, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=471)
      0.33333334 = coord(1/3)
    
    Abstract
    We present a search system for grammatically analyzed corpora of Finnish parliamentary records and interviews with former parliamentarians, annotated with metadata of talk structure and involved parliamentarians, and discuss their use through carefully chosen digital humanities case studies. We first introduce the construction, contents, and principles of use of the corpora. Then we discuss the application of the search system and the corpora to study how politicians talk about power, how ideological terms are used in political speech, and how to identify narratives in the data. All case studies stem from questions in the humanities and the social sciences, but rely on the grammatically parsed corpora in both identifying and quantifying passages of interest. Finally, the paper discusses the role of natural language processing methods for questions in the (digital) humanities. It makes the claim that a digital humanities inquiry of parliamentary speech and interviews with politicians cannot only rely on computational humanities modeling, but needs to accommodate a range of perspectives starting with simple searches, quantitative exploration, and ending with modeling. Furthermore, the digital humanities need a more thorough discussion about how the utilization of tools from information science and technologies alter the research questions posed in the humanities.
    Series
    JASIST special issue on digital humanities (DH): C. Methodological innovations, challenges, and new interest in DH
  18. Zaitseva, E.M.: Developing linguistic tools of thematic search in library information systems (2023) 0.01
    0.0076997704 = product of:
      0.02309931 = sum of:
        0.02309931 = weight(_text_:on in 1187) [ClassicSimilarity], result of:
          0.02309931 = score(doc=1187,freq=6.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.21044704 = fieldWeight in 1187, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1187)
      0.33333334 = coord(1/3)
    
    Abstract
    Within the R&D program "Information support of research by scientists and specialists on the basis of RNPLS&T Open Archive - the system of scientific knowledge aggregation", the RNPLS&T analyzes the use of linguistic tools of thematic search in the modern library information systems and the prospects for their development. The author defines the key common characteristics of e-catalogs of the largest Russian libraries revealed at the first stage of the analysis. Based on the specified common characteristics and detailed comparison analysis, the author outlines and substantiates the vectors for enhancing search inter faces of e-catalogs. The focus is made on linguistic tools of thematic search in library information systems; the key vectors are suggested: use of thematic search at different search levels with the clear-cut level differentiation; use of combined functionality within thematic search system; implementation of classification search in all e-catalogs; hierarchical representation of classifications; use of the matching systems for classification information retrieval languages, and in the long term classification and verbal information retrieval languages, and various verbal information retrieval languages. The author formulates practical recommendations to improve thematic search in library information systems.
  19. Lund, B.D.: ¬A brief review of ChatGPT : its value and the underlying GPT technology (2023) 0.01
    0.0075442037 = product of:
      0.02263261 = sum of:
        0.02263261 = weight(_text_:on in 873) [ClassicSimilarity], result of:
          0.02263261 = score(doc=873,freq=4.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.20619515 = fieldWeight in 873, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=873)
      0.33333334 = coord(1/3)
    
    Abstract
    In this review paper, ChatGPT, a public tool developed by OpenAI that utilizes GPT technology to fulfill a range of text-based requests is examined. ChatGPT is a sophisticated chatbot capable of understanding and interpreting user requests, generating appropriate responses in nearly natural human language, and completing advanced tasks such as writing thank you letters and addressing productivity issues. The details of how ChatGPT works, as well as the potential impacts of this technology on various industries, are discussed. The concept of Generative Pre-Trained Transformer (GPT), the language model on which ChatGPT is based, is also explored, as well as the process of unsupervised pretraining and supervised fine-tuning that is used to refine the GPT algorithm. A letter written by ChatGPT to a colleague from Iran is presented as an example of the chatbot's capabilities.
  20. Azpiazu, I.M.; Soledad Pera, M.: Is cross-lingual readability assessment possible? (2020) 0.01
    0.007112743 = product of:
      0.021338228 = sum of:
        0.021338228 = weight(_text_:on in 5868) [ClassicSimilarity], result of:
          0.021338228 = score(doc=5868,freq=8.0), product of:
            0.109763056 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.04990557 = queryNorm
            0.19440265 = fieldWeight in 5868, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.03125 = fieldNorm(doc=5868)
      0.33333334 = coord(1/3)
    
    Abstract
    Most research efforts related to automatic readability assessment focus on the design of strategies that apply to a specific language. These state-of-the-art strategies are highly dependent on linguistic features that best suit the language for which they were intended, constraining their adaptability and making it difficult to determine whether they would remain effective if they were applied to estimate the level of difficulty of texts in other languages. In this article, we present the results of a study designed to determine the feasibility of a cross-lingual readability assessment strategy. For doing so, we first analyzed the most common features used for readability assessment and determined their influence on the readability prediction process of 6 different languages: English, Spanish, Basque, Italian, French, and Catalan. In addition, we developed a cross-lingual readability assessment strategy that serves as a means to empirically explore the potential advantages of employing a single strategy (and set of features) for readability assessment in different languages, including interlanguage prediction agreement and prediction accuracy improvement for low-resource languages.Friend request acceptance and information disclosure constitute 2 important privacy decisions for users to control the flow of their personal information in social network sites (SNSs). These decisions are greatly influenced by contextual characteristics of the request. However, the contextual influence may not be uniform among users with different levels of privacy concerns. In this study, we hypothesize that users with higher privacy concerns may consider contextual factors differently from those with lower privacy concerns. By conducting a scenario-based survey study and structural equation modeling, we verify the interaction effects between privacy concerns and contextual factors. We additionally find that users' perceived risk towards the requester mediates the effect of context and privacy concerns. These results extend our understanding about the cognitive process behind privacy decision making in SNSs. The interaction effects suggest strategies for SNS providers to predict user's friend request acceptance and to customize context-aware privacy decision support based on users' different privacy attitudes.

Languages

  • e 27
  • d 5

Types