Search (35 results, page 1 of 2)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.07
    0.067197435 = product of:
      0.16799358 = sum of:
        0.13309802 = weight(_text_:index in 1418) [ClassicSimilarity], result of:
          0.13309802 = score(doc=1418,freq=12.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.591301 = fieldWeight in 1418, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.03489555 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
          0.03489555 = score(doc=1418,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.19345059 = fieldWeight in 1418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
      0.4 = coord(2/5)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  2. Green, R.: Relational aspects of subject authority control : the contributions of classificatory structure (2015) 0.04
    0.04469589 = product of:
      0.111739725 = sum of:
        0.07684418 = weight(_text_:index in 2282) [ClassicSimilarity], result of:
          0.07684418 = score(doc=2282,freq=4.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.3413878 = fieldWeight in 2282, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2282)
        0.03489555 = weight(_text_:22 in 2282) [ClassicSimilarity], result of:
          0.03489555 = score(doc=2282,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.19345059 = fieldWeight in 2282, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2282)
      0.4 = coord(2/5)
    
    Abstract
    The structure of a classification system contributes in a variety of ways to representing semantic relationships between its topics in the context of subject authority control. We explore this claim using the Dewey Decimal Classification (DDC) system as a case study. The DDC links its classes into a notational hierarchy, supplemented by a network of relationships between topics, expressed in class descriptions and in the Relative Index (RI). Topics/subjects are expressed both by the natural language text of the caption and notes (including Manual notes) in a class description and by the controlled vocabulary of the RI's alphabetic index, which shows where topics are treated in the classificatory structure. The expression of relationships between topics depends on paradigmatic and syntagmatic relationships between natural language terms in captions, notes, and RI terms; on the meaning of specific note types; and on references recorded between RI terms. The specific means used in the DDC for capturing hierarchical (including disciplinary), equivalence and associative relationships are surveyed.
    Date
    8.11.2015 21:27:22
  3. Buchanan, B.: Theory of library classification (1979) 0.02
    0.01738785 = product of:
      0.08693925 = sum of:
        0.08693925 = weight(_text_:index in 641) [ClassicSimilarity], result of:
          0.08693925 = score(doc=641,freq=2.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.3862362 = fieldWeight in 641, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0625 = fieldNorm(doc=641)
      0.2 = coord(1/5)
    
    Content
    Inhalt: Classification: definition and uses - The relationships between classes - Enumerative and faceted schemes - Decisions - The construction of a faceted scheme: I - The construction of a faceted scheme: II - Notation: I - Notation: II - Notation: III - The alphabetical subject index - General classification schemes - Objections to systematic order - Automatic classification
  4. Maniez, J.: ¬Des classifications aux thesaurus : du bon usage des facettes (1999) 0.02
    0.016749864 = product of:
      0.08374932 = sum of:
        0.08374932 = weight(_text_:22 in 6404) [ClassicSimilarity], result of:
          0.08374932 = score(doc=6404,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.46428138 = fieldWeight in 6404, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.09375 = fieldNorm(doc=6404)
      0.2 = coord(1/5)
    
    Date
    1. 8.1996 22:01:00
  5. Maniez, J.: ¬Du bon usage des facettes : des classifications aux thésaurus (1999) 0.02
    0.016749864 = product of:
      0.08374932 = sum of:
        0.08374932 = weight(_text_:22 in 3773) [ClassicSimilarity], result of:
          0.08374932 = score(doc=3773,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.46428138 = fieldWeight in 3773, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.09375 = fieldNorm(doc=3773)
      0.2 = coord(1/5)
    
    Date
    1. 8.1996 22:01:00
  6. Foskett, D.J.: Systems theory and its relevance to documentary classification (2017) 0.02
    0.016749864 = product of:
      0.08374932 = sum of:
        0.08374932 = weight(_text_:22 in 3176) [ClassicSimilarity], result of:
          0.08374932 = score(doc=3176,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.46428138 = fieldWeight in 3176, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.09375 = fieldNorm(doc=3176)
      0.2 = coord(1/5)
    
    Date
    6. 5.2017 18:46:22
  7. Kochar, R.S.: Library classification systems (1998) 0.02
    0.015214371 = product of:
      0.07607185 = sum of:
        0.07607185 = weight(_text_:index in 931) [ClassicSimilarity], result of:
          0.07607185 = score(doc=931,freq=2.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.33795667 = fieldWeight in 931, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0546875 = fieldNorm(doc=931)
      0.2 = coord(1/5)
    
    Content
    Contents: Preface. 1. Classification systems. 2. Automatic classification. 3. Knowledge classification. 4. Reflections on library classification. 5. General classification schemes. 6. Hierarchical classification. 7. Faceted classification. B. Present methods and future directions. Index.
  8. Green, R.; Panzer, M.: ¬The ontological character of classes in the Dewey Decimal Classification 0.02
    0.015214371 = product of:
      0.07607185 = sum of:
        0.07607185 = weight(_text_:index in 3530) [ClassicSimilarity], result of:
          0.07607185 = score(doc=3530,freq=2.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.33795667 = fieldWeight in 3530, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3530)
      0.2 = coord(1/5)
    
    Abstract
    Classes in the Dewey Decimal Classification (DDC) system function as neighborhoods around focal topics in captions and notes. Topical neighborhoods are generated through specialization and instantiation, complex topic synthesis, index terms and mapped headings, hierarchical force, rules for choosing between numbers, development of the DDC over time, and use of the system in classifying resources. Implications of representation using a formal knowledge representation language are explored.
  9. Farradane, J.E.L.: ¬A scientific theory of classification and indexing and its practical applications (1950) 0.01
    0.013040888 = product of:
      0.06520444 = sum of:
        0.06520444 = weight(_text_:index in 1654) [ClassicSimilarity], result of:
          0.06520444 = score(doc=1654,freq=2.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.28967714 = fieldWeight in 1654, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.046875 = fieldNorm(doc=1654)
      0.2 = coord(1/5)
    
    Abstract
    A classification is a theory of the structure of knowledge. From a discussion of the nature of truth, it is held that scientific knowledge is the only knowledge which can be regarded as true. The method of induction from empirical data is therefore applied to the construction of a classification. Items of knowledge are divided into uniquely definable terms, called isolates, and the relations between them, called operators. It is shown that only four basic operators exist, expressing appurtenance, equivalence, reaction and causation; using symbols for these operators, all subjects can be analysed in a linear form called an analet. With the addition of the permissible permutations of such analets, formed according to simple rules, alphabetical arrangement of the first terms provide a complete, logical subject index. Examples are given, and possible difficulties are considered. A classification can then be constructed by selection of deductive relations, arranged in hierarchical form. The nature of possible classifications is discussed. It is claimed that such an inductively constructed classification is the only true representation of the structure of knowledge, and that these principles provide a simple technique for accurately and fully indexing and classifying any given set of data, with complete flexibility
  10. Slavic, A.; Cordeiro, M.I.: Core requirements for automation of analytico-synthetic classifications (2004) 0.01
    0.013040888 = product of:
      0.06520444 = sum of:
        0.06520444 = weight(_text_:index in 2651) [ClassicSimilarity], result of:
          0.06520444 = score(doc=2651,freq=2.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.28967714 = fieldWeight in 2651, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.046875 = fieldNorm(doc=2651)
      0.2 = coord(1/5)
    
    Abstract
    The paper analyses the importance of data presentation and modelling and its role in improving the management, use and exchange of analytico-synthetic classifications in automated systems. Inefficiencies, in this respect, hinder the automation of classification systems that offer the possibility of building compound index/search terms. The lack of machine readable data expressing the semantics and structure of a classification vocabulary has negative effects on information management and retrieval, thus restricting the potential of both automated systems and classifications themselves. The authors analysed the data representation structure of three general analytico-synthetic classification systems (BC2-Bliss Bibliographic Classification; BSO-Broad System of Ordering; UDC-Universal Decimal Classification) and put forward some core requirements for classification data representation
  11. Vickery, B.C.: Systematic subject indexing (1985) 0.01
    0.012295068 = product of:
      0.06147534 = sum of:
        0.06147534 = weight(_text_:index in 3636) [ClassicSimilarity], result of:
          0.06147534 = score(doc=3636,freq=4.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.27311024 = fieldWeight in 3636, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.03125 = fieldNorm(doc=3636)
      0.2 = coord(1/5)
    
    Abstract
    Brian C. Vickery, Director and Professor, School of Library, Archive and Information Studies, University College, London, is a prolific writer on classification and information retrieval. This paper was one of the earliest to present initial efforts by the Classification Research Group (q.v.). In it he clearly outlined the need for classification in subject indexing, which, at the time he wrote, was not a commonplace understanding. In fact, some indexing systems were made in the first place specifically to avoid general classification systems which were out of date in all fast-moving disciplines, especially in the "hard" sciences. Vickery picked up Julia Pettee's work (q.v.) an the concealed classification in subject headings (1947) and added to it, mainly adopting concepts from the work of S. R. Ranganathan (q.v.). He had already published a paper an notation in classification, pointing out connections between notation, words, and the concepts which they represent. He was especially concerned about the structure of notational symbols as such symbols represented relationships among subjects. Vickery also emphasized that index terms cover all aspects of a subject so that, in addition to having a basis in classification, the ideal index system should also have standardized nomenclature, as weIl as show evidence of a systematic classing of elementary terms. The necessary linkage between system and terms should be one of a number of methods, notably:
  12. Connaway, L.S.; Sievert, M.C.: Comparison of three classification systems for information on health insurance (1996) 0.01
    0.011166576 = product of:
      0.05583288 = sum of:
        0.05583288 = weight(_text_:22 in 7242) [ClassicSimilarity], result of:
          0.05583288 = score(doc=7242,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.30952093 = fieldWeight in 7242, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0625 = fieldNorm(doc=7242)
      0.2 = coord(1/5)
    
    Date
    22. 4.1997 21:10:19
  13. Belayche, C.: ¬A propos de la classification de Dewey (1997) 0.01
    0.011166576 = product of:
      0.05583288 = sum of:
        0.05583288 = weight(_text_:22 in 1171) [ClassicSimilarity], result of:
          0.05583288 = score(doc=1171,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.30952093 = fieldWeight in 1171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0625 = fieldNorm(doc=1171)
      0.2 = coord(1/5)
    
    Source
    Bulletin d'informations de l'Association des Bibliothecaires Francais. 1997, no.175, S.22-23
  14. Lin, W.-Y.C.: ¬The concept and applications of faceted classifications (2006) 0.01
    0.011166576 = product of:
      0.05583288 = sum of:
        0.05583288 = weight(_text_:22 in 5083) [ClassicSimilarity], result of:
          0.05583288 = score(doc=5083,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.30952093 = fieldWeight in 5083, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0625 = fieldNorm(doc=5083)
      0.2 = coord(1/5)
    
    Date
    27. 5.2007 22:19:35
  15. Lorenz, B.: Zur Theorie und Terminologie der bibliothekarischen Klassifikation (2018) 0.01
    0.011166576 = product of:
      0.05583288 = sum of:
        0.05583288 = weight(_text_:22 in 4339) [ClassicSimilarity], result of:
          0.05583288 = score(doc=4339,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.30952093 = fieldWeight in 4339, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0625 = fieldNorm(doc=4339)
      0.2 = coord(1/5)
    
    Pages
    S.1-22
  16. Winske, E.: ¬The development and structure of an urban, regional, and local documents classification scheme (1996) 0.01
    0.009770754 = product of:
      0.04885377 = sum of:
        0.04885377 = weight(_text_:22 in 7241) [ClassicSimilarity], result of:
          0.04885377 = score(doc=7241,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.2708308 = fieldWeight in 7241, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7241)
      0.2 = coord(1/5)
    
    Footnote
    Paper presented at conference on 'Local documents, a new classification scheme' at the Research Caucus of the Florida Library Association Annual Conference, Fort Lauderdale, Florida 22 Apr 95
  17. Olson, H.A.: Sameness and difference : a cultural foundation of classification (2001) 0.01
    0.009770754 = product of:
      0.04885377 = sum of:
        0.04885377 = weight(_text_:22 in 166) [ClassicSimilarity], result of:
          0.04885377 = score(doc=166,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.2708308 = fieldWeight in 166, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0546875 = fieldNorm(doc=166)
      0.2 = coord(1/5)
    
    Date
    10. 9.2000 17:38:22
  18. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2017) 0.01
    0.009770754 = product of:
      0.04885377 = sum of:
        0.04885377 = weight(_text_:22 in 3494) [ClassicSimilarity], result of:
          0.04885377 = score(doc=3494,freq=2.0), product of:
            0.18038483 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051511593 = queryNorm
            0.2708308 = fieldWeight in 3494, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3494)
      0.2 = coord(1/5)
    
    Pages
    S.22-36
  19. Classification research for knowledge representation and organization : Proc. of the 5th Int. Study Conf. on Classification Research, Toronto, Canada, 24.-28.6.1991 (1992) 0.01
    0.0092213005 = product of:
      0.046106502 = sum of:
        0.046106502 = weight(_text_:index in 2072) [ClassicSimilarity], result of:
          0.046106502 = score(doc=2072,freq=4.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.20483267 = fieldWeight in 2072, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2072)
      0.2 = coord(1/5)
    
    Content
    Enthält die Beiträge: SVENONIUS, E.: Classification: prospects, problems, and possibilities; BEALL, J.: Editing the Dewey Decimal Classification online: the evolution of the DDC database; BEGHTOL, C.: Toward a theory of fiction analysis for information storage and retrieval; CRAVEN, T.C.: Concept relation structures and their graphic display; FUGMANN, R.: Illusory goals in information science research; GILCHRIST, A.: UDC: the 1990's and beyond; GREEN, R.: The expression of syntagmatic relationships in indexing: are frame-based index languages the answer?; HUMPHREY, S.M.: Use and management of classification systems for knowledge-based indexing; MIKSA, F.L.: The concept of the universe of knowledge and the purpose of LIS classification; SCOTT, M. u. A.F. FONSECA: Methodology for functional appraisal of records and creation of a functional thesaurus; ALBRECHTSEN, H.: PRESS: a thesaurus-based information system for software reuse; AMAESHI, B.: A preliminary AAT compatible African art thesaurus; CHATTERJEE, A.: Structures of Indian classification systems of the pre-Ranganathan era and their impact on the Colon Classification; COCHRANE, P.A.: Indexing and searching thesauri, the Janus or Proteus of information retrieval; CRAVEN, T.C.: A general versus a special algorithm in the graphic display of thesauri; DAHLBERG, I.: The basis of a new universal classification system seen from a philosophy of science point of view: DRABENSTOTT, K.M., RIESTER, L.C. u. B.A.DEDE: Shelflisting using expert systems; FIDEL, R.: Thesaurus requirements for an intermediary expert system; GREEN, R.: Insights into classification from the cognitive sciences: ramifications for index languages; GROLIER, E. de: Towards a syndetic information retrieval system; GUENTHER, R.: The USMARC format for classification data: development and implementation; HOWARTH, L.C.: Factors influencing policies for the adoption and integration of revisions to classification schedules; HUDON, M.: Term definitions in subject thesauri: the Canadian literacy thesaurus experience; HUSAIN, S.: Notational techniques for the accomodation of subjects in Colon Classification 7th edition: theoretical possibility vis-à-vis practical need; KWASNIK, B.H. u. C. JORGERSEN: The exploration by means of repertory grids of semantic differences among names of official documents; MICCO, M.: Suggestions for automating the Library of Congress Classification schedules; PERREAULT, J.M.: An essay on the prehistory of general categories (II): G.W. Leibniz, Conrad Gesner; REES-POTTER, L.K.: How well do thesauri serve the social sciences?; REVIE, C.W. u. G. SMART: The construction and the use of faceted classification schema in technical domains; ROCKMORE, M.: Structuring a flexible faceted thsaurus record for corporate information retrieval; ROULIN, C.: Sub-thesauri as part of a metathesaurus; SMITH, L.C.: UNISIST revisited: compatibility in the context of collaboratories; STILES, W.G.: Notes concerning the use chain indexing as a possible means of simulating the inductive leap within artificial intelligence; SVENONIUS, E., LIU, S. u. B. SUBRAHMANYAM: Automation in chain indexing; TURNER, J.: Structure in data in the Stockshot database at the National Film Board of Canada; VIZINE-GOETZ, D.: The Dewey Decimal Classification as an online classification tool; WILLIAMSON, N.J.: Restructuring UDC: problems and possibilies; WILSON, A.: The hierarchy of belief: ideological tendentiousness in universal classification; WILSON, B.F.: An evaluation of the systematic botany schedule of the Universal Decimal Classification (English full edition, 1979); ZENG, L.: Research and development of classification and thesauri in China; CONFERENCE SUMMARY AND CONCLUSIONS
  20. Hjoerland, B.: ¬The methodology of constructing classification schemes : a discussion of the state-of-the-art (2003) 0.01
    0.008693925 = product of:
      0.043469626 = sum of:
        0.043469626 = weight(_text_:index in 2760) [ClassicSimilarity], result of:
          0.043469626 = score(doc=2760,freq=2.0), product of:
            0.2250935 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.051511593 = queryNorm
            0.1931181 = fieldWeight in 2760, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.03125 = fieldNorm(doc=2760)
      0.2 = coord(1/5)
    
    Abstract
    Special classifications have been somewhat neglected in KO compared to general classifications. The methodology of constructing special classifications is important, however, also for the methodology of constructing general classification schemes. The methodology of constructing special classifications can be regarded as one among about a dozen approaches to domain analysis. The methodology of (special) classification in LIS has been dominated by the rationalistic facet-analytic tradition, which, however, neglects the question of the empirical basis of classification. The empirical basis is much better grasped by, for example, bibliometric methods. Even the combination of rational and empirical methods is insufficient. This presentation will provide evidence for the necessity of historical and pragmatic methods for the methodology of classification and will point to the necessity of analyzing "paradigms". The presentation covers the methods of constructing classifications from Ranganathan to the design of ontologies in computer science and further to the recent "paradigm shift" in classification research. 1. Introduction Classification of a subject field is one among about eleven approaches to analyzing a domain that are specific for information science and in my opinion define the special competencies of information specialists (Hjoerland, 2002a). Classification and knowledge organization are commonly regarded as core qualifications of librarians and information specialists. Seen from this perspective one expects a firm methodological basis for the field. This paper tries to explore the state-of-the-art conceming the methodology of classification. 2. Classification: Science or non-science? As it is part of the curriculum at universities and subject in scientific journals and conferences like ISKO, orte expects classification/knowledge organization to be a scientific or scholarly activity and a scientific field. However, very often when information specialists classify or index documents and when they revise classification system, the methods seem to be rather ad hoc. Research libraries or scientific databases may employ people with adequate subject knowledge. When information scientists construct or evaluate systems, they very often elicit the knowledge from "experts" (Hjorland, 2002b, p. 260). Mostly no specific arguments are provided for the specific decisions in these processes.