Search (31 results, page 2 of 2)

  • × author_ss:"Leydesdorff, L."
  1. Leydesdorff, L.; Rafols, I.: Local emergence and global diffusion of research technologies : an exploration of patterns of network formation (2011) 0.00
    0.0018186709 = product of:
      0.02546139 = sum of:
        0.02546139 = weight(_text_:subject in 4445) [ClassicSimilarity], result of:
          0.02546139 = score(doc=4445,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.23709705 = fieldWeight in 4445, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=4445)
      0.071428575 = coord(1/14)
    
    Abstract
    Grasping the fruits of "emerging technologies" is an objective of many government priority programs in a knowledge-based and globalizing economy. We use the publication records (in the Science Citation Index) of two emerging technologies to study the mechanisms of diffusion in the case of two innovation trajectories: small interference RNA (siRNA) and nanocrystalline solar cells (NCSC). Methods for analyzing and visualizing geographical and cognitive diffusion are specified as indicators of different dynamics. Geographical diffusion is illustrated with overlays to Google Maps; cognitive diffusion is mapped using an overlay to a map based on the ISI subject categories. The evolving geographical networks show both preferential attachment and small-world characteristics. The strength of preferential attachment decreases over time while the network evolves into an oligopolistic control structure with small-world characteristics. The transition from disciplinary-oriented ("Mode 1") to transfer-oriented ("Mode 2") research is suggested as the crucial difference in explaining the different rates of diffusion between siRNA and NCSC.
  2. Shelton, R.D.; Leydesdorff, L.: Publish or patent : bibliometric evidence for empirical trade-offs in national funding strategies (2012) 0.00
    0.001696343 = product of:
      0.0237488 = sum of:
        0.0237488 = product of:
          0.0474976 = sum of:
            0.0474976 = weight(_text_:schemes in 70) [ClassicSimilarity], result of:
              0.0474976 = score(doc=70,freq=2.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.2956176 = fieldWeight in 70, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=70)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Abstract
    Multivariate linear regression models suggest a trade-off in allocations of national research and development (R&D). Government funding and spending in the higher education sector encourage publications as a long-term research benefit. Conversely, other components such as industrial funding and spending in the business sector encourage patenting. Our results help explain why the United States trails the European Union in publications: The focus in the United States is on industrial funding-some 70% of its total R&D investment. Likewise, our results also help explain why the European Union trails the United States in patenting, since its focus on government funding is less effective than industrial funding in predicting triadic patenting. Government funding contributes negatively to patenting in a multiple regression, and this relationship is significant in the case of triadic patenting. We provide new forecasts about the relationships of the United States, the European Union, and China for publishing; these results suggest much later dates for changes than previous forecasts because Chinese growth has been slowing down since 2003. Models for individual countries might be more successful than regression models whose parameters are averaged over a set of countries because nations can be expected to differ historically in terms of the institutional arrangements and funding schemes.
  3. Leydesdorff, L.; Bornmann, L.: Integrated impact indicators compared with impact factors : an alternative research design with policy implications (2011) 0.00
    0.0015155592 = product of:
      0.021217827 = sum of:
        0.021217827 = weight(_text_:subject in 4919) [ClassicSimilarity], result of:
          0.021217827 = score(doc=4919,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.19758089 = fieldWeight in 4919, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4919)
      0.071428575 = coord(1/14)
    
    Abstract
    In bibliometrics, the association of "impact" with central-tendency statistics is mistaken. Impacts add up, and citation curves therefore should be integrated instead of averaged. For example, the journals MIS Quarterly and Journal of the American Society for Information Science and Technology differ by a factor of 2 in terms of their respective impact factors (IF), but the journal with the lower IF has the higher impact. Using percentile ranks (e.g., top-1%, top-10%, etc.), an Integrated Impact Indicator (I3) can be based on integration of the citation curves, but after normalization of the citation curves to the same scale. The results across document sets can be compared as percentages of the total impact of a reference set. Total number of citations, however, should not be used instead because the shape of the citation curves is then not appreciated. I3 can be applied to any document set and any citation window. The results of the integration (summation) are fully decomposable in terms of journals or institutional units such as nations, universities, and so on because percentile ranks are determined at the paper level. In this study, we first compare I3 with IFs for the journals in two Institute for Scientific Information subject categories ("Information Science & Library Science" and "Multidisciplinary Sciences"). The library and information science set is additionally decomposed in terms of nations. Policy implications of this possible paradigm shift in citation impact analysis are specified.
  4. Leydesdorff, L.; Hammarfelt, B.: ¬The structure of the Arts & Humanities Citation Index : a mapping on the basis of aggregated citations among 1,157 journals (2011) 0.00
    0.0015155592 = product of:
      0.021217827 = sum of:
        0.021217827 = weight(_text_:subject in 4941) [ClassicSimilarity], result of:
          0.021217827 = score(doc=4941,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.19758089 = fieldWeight in 4941, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4941)
      0.071428575 = coord(1/14)
    
    Abstract
    Using the Arts & Humanities Citation Index (A&HCI) 2008, we apply mapping techniques previously developed for mapping journal structures in the Science and Social Sciences Citation Indices. Citation relations among the 110,718 records were aggregated at the level of 1,157 journals specific to the A&HCI, and the journal structures are questioned on whether a cognitive structure can be reconstructed and visualized. Both cosine-normalization (bottom up) and factor analysis (top down) suggest a division into approximately 12 subsets. The relations among these subsets are explored using various visualization techniques. However, we were not able to retrieve this structure using the Institute for Scientific Information Subject Categories, including the 25 categories that are specific to the A&HCI. We discuss options for validation such as against the categories of the Humanities Indicators of the American Academy of Arts and Sciences, the panel structure of the European Reference Index for the Humanities, and compare our results with the curriculum organization of the Humanities Section of the College of Letters and Sciences of the University of California at Los Angeles as an example of institutional organization.
  5. Bauer, J.; Leydesdorff, L.; Bornmann, L.: Highly cited papers in Library and Information Science (LIS) : authors, institutions, and network structures (2016) 0.00
    0.0015155592 = product of:
      0.021217827 = sum of:
        0.021217827 = weight(_text_:subject in 3231) [ClassicSimilarity], result of:
          0.021217827 = score(doc=3231,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.19758089 = fieldWeight in 3231, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3231)
      0.071428575 = coord(1/14)
    
    Abstract
    As a follow-up to the highly cited authors list published by Thomson Reuters in June 2014, we analyzed the top 1% most frequently cited papers published between 2002 and 2012 included in the Web of Science (WoS) subject category "Information Science & Library Science." In all, 798 authors contributed to 305 top 1% publications; these authors were employed at 275 institutions. The authors at Harvard University contributed the largest number of papers, when the addresses are whole-number counted. However, Leiden University leads the ranking if fractional counting is used. Twenty-three of the 798 authors were also listed as most highly cited authors by Thomson Reuters in June 2014 (http://highlycited.com/). Twelve of these 23 authors were involved in publishing 4 or more of the 305 papers under study. Analysis of coauthorship relations among the 798 highly cited scientists shows that coauthorships are based on common interests in a specific topic. Three topics were important between 2002 and 2012: (a) collection and exploitation of information in clinical practices; (b) use of the Internet in public communication and commerce; and (c) scientometrics.
  6. Leydesdorff, L.: ¬The construction and globalization of the knowledge base in inter-human communication systems (2003) 0.00
    8.7171455E-4 = product of:
      0.0122040035 = sum of:
        0.0122040035 = product of:
          0.024408007 = sum of:
            0.024408007 = weight(_text_:22 in 1621) [ClassicSimilarity], result of:
              0.024408007 = score(doc=1621,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.23214069 = fieldWeight in 1621, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1621)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    22. 5.2003 19:48:04
  7. Leydesdorff, L.: Can networks of journal-journal citations be used as indicators of change in the social sciences? (2003) 0.00
    8.7171455E-4 = product of:
      0.0122040035 = sum of:
        0.0122040035 = product of:
          0.024408007 = sum of:
            0.024408007 = weight(_text_:22 in 4460) [ClassicSimilarity], result of:
              0.024408007 = score(doc=4460,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.23214069 = fieldWeight in 4460, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4460)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    6.11.2005 19:02:22
  8. Leydesdorff, L.; Sun, Y.: National and international dimensions of the Triple Helix in Japan : university-industry-government versus international coauthorship relations (2009) 0.00
    8.7171455E-4 = product of:
      0.0122040035 = sum of:
        0.0122040035 = product of:
          0.024408007 = sum of:
            0.024408007 = weight(_text_:22 in 2761) [ClassicSimilarity], result of:
              0.024408007 = score(doc=2761,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.23214069 = fieldWeight in 2761, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2761)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    22. 3.2009 19:07:20
  9. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.00
    8.7171455E-4 = product of:
      0.0122040035 = sum of:
        0.0122040035 = product of:
          0.024408007 = sum of:
            0.024408007 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
              0.024408007 = score(doc=4681,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.23214069 = fieldWeight in 4681, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4681)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    8. 1.2019 18:22:45
  10. Hellsten, I.; Leydesdorff, L.: ¬The construction of interdisciplinarity : the development of the knowledge base and programmatic focus of the journal Climatic Change, 1977-2013 (2016) 0.00
    7.264289E-4 = product of:
      0.010170003 = sum of:
        0.010170003 = product of:
          0.020340007 = sum of:
            0.020340007 = weight(_text_:22 in 3089) [ClassicSimilarity], result of:
              0.020340007 = score(doc=3089,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.19345059 = fieldWeight in 3089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3089)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    24. 8.2016 17:53:22
  11. Leydesdorff, L.; Johnson, M.W.; Ivanova, I.: Toward a calculus of redundancy : signification, codification, and anticipation in cultural evolution (2018) 0.00
    7.264289E-4 = product of:
      0.010170003 = sum of:
        0.010170003 = product of:
          0.020340007 = sum of:
            0.020340007 = weight(_text_:22 in 4463) [ClassicSimilarity], result of:
              0.020340007 = score(doc=4463,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.19345059 = fieldWeight in 4463, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4463)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    29. 9.2018 11:22:09