Search (4 results, page 1 of 1)

  • × author_ss:"Song, M."
  • × year_i:[2010 TO 2020}
  1. Song, M.; Kim, S.Y.; Zhang, G.; Ding, Y.; Chambers, T.: Productivity and influence in bioinformatics : a bibliometric analysis using PubMed central (2014) 0.00
    0.0018186709 = product of:
      0.02546139 = sum of:
        0.02546139 = weight(_text_:subject in 1202) [ClassicSimilarity], result of:
          0.02546139 = score(doc=1202,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.23709705 = fieldWeight in 1202, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=1202)
      0.071428575 = coord(1/14)
    
    Abstract
    Bioinformatics is a fast-growing field based on the optimal use of "big data" gathered in genomic, proteomics, and functional genomics research. In this paper, we conduct a comprehensive and in-depth bibliometric analysis of the field of bioinformatics by extracting citation data from PubMed Central full-text. Citation data for the period 2000 to 2011, comprising 20,869 papers with 546,245 citations, was used to evaluate the productivity and influence of this emerging field. Four measures were used to identify productivity; most productive authors, most productive countries, most productive organizations, and most popular subject terms. Research impact was analyzed based on the measures of most cited papers, most cited authors, emerging stars, and leading organizations. Results show the overall trends between the periods 2000 to 2003 and 2004 to 2007 were dissimilar, while trends between the periods 2004 to 2007 and 2008 to 2011 were similar. In addition, the field of bioinformatics has undergone a significant shift, co-evolving with other biomedical disciplines.
  2. Song, M.; Kim, S.Y.; Lee, K.: Ensemble analysis of topical journal ranking in bioinformatics (2017) 0.00
    0.0015155592 = product of:
      0.021217827 = sum of:
        0.021217827 = weight(_text_:subject in 3650) [ClassicSimilarity], result of:
          0.021217827 = score(doc=3650,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.19758089 = fieldWeight in 3650, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3650)
      0.071428575 = coord(1/14)
    
    Abstract
    Journal rankings, frequently determined by the journal impact factor or similar indices, are quantitative measures for evaluating a journal's performance in its discipline, which is presently a major research thrust in the bibliometrics field. Recently, text mining was adopted to augment journal ranking-based evaluation with the content analysis of a discipline taking a time-variant factor into consideration. However, previous studies focused mainly on a silo analysis of a discipline using either citation-or content-oriented approaches, and no attempt was made to analyze topical journal ranking and its change over time in a seamless and integrated manner. To address this issue, we propose a journal-time-topic model, an extension of Dirichlet multinomial regression, which we applied to the field of bioinformatics to understand journal contribution to topics in a field and the shift of topic trends. The journal-time-topic model allows us to identify which journals are the major leaders in what topics and the manner in which their topical focus. It also helps reveal an interesting distinct pattern in the journal impact factor of high- and low-ranked journals. The study results shed a new light for understanding topic specific journal rankings and shifts in journals' concentration on a subject.
  3. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.00
    8.7171455E-4 = product of:
      0.0122040035 = sum of:
        0.0122040035 = product of:
          0.024408007 = sum of:
            0.024408007 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
              0.024408007 = score(doc=1521,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.23214069 = fieldWeight in 1521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1521)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    22. 8.2014 16:52:04
  4. Song, M.; Kang, K.; An, J.Y.: Investigating drug-disease interactions in drug-symptom-disease triples via citation relations (2018) 0.00
    7.264289E-4 = product of:
      0.010170003 = sum of:
        0.010170003 = product of:
          0.020340007 = sum of:
            0.020340007 = weight(_text_:22 in 4545) [ClassicSimilarity], result of:
              0.020340007 = score(doc=4545,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.19345059 = fieldWeight in 4545, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4545)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    1.11.2018 18:19:22