Search (6 results, page 1 of 1)

  • × subject_ss:"Data mining"
  1. Information visualization in data mining and knowledge discovery (2002) 0.01
    0.011864894 = product of:
      0.055369504 = sum of:
        0.00951645 = weight(_text_:classification in 1789) [ClassicSimilarity], result of:
          0.00951645 = score(doc=1789,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.099522084 = fieldWeight in 1789, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.00951645 = weight(_text_:classification in 1789) [ClassicSimilarity], result of:
          0.00951645 = score(doc=1789,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.099522084 = fieldWeight in 1789, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.036336605 = sum of:
          0.028200602 = weight(_text_:texts in 1789) [ClassicSimilarity], result of:
            0.028200602 = score(doc=1789,freq=4.0), product of:
              0.16460659 = queryWeight, product of:
                5.4822793 = idf(docFreq=499, maxDocs=44218)
                0.03002521 = queryNorm
              0.17132123 = fieldWeight in 1789, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.4822793 = idf(docFreq=499, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
          0.008136002 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
            0.008136002 = score(doc=1789,freq=2.0), product of:
              0.10514317 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03002521 = queryNorm
              0.07738023 = fieldWeight in 1789, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
      0.21428572 = coord(3/14)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
    With contributors almost exclusively from the computer science field, the intended audience of this work is heavily slanted towards a computer science perspective. However, it is highly readable and provides introductory material that would be useful to information scientists from a variety of domains. Yet, much interesting work in information visualization from other fields could have been included giving the work more of an interdisciplinary perspective to complement their goals of integrating work in this area. Unfortunately, many of the application chapters are these, shallow, and lack complementary illustrations of visualization techniques or user interfaces used. However, they do provide insight into the many applications being developed in this rapidly expanding field. The authors have successfully put together a highly useful reference text for the data mining and information visualization communities. Those interested in a good introduction and overview of complementary research areas in these fields will be satisfied with this collection of papers. The focus upon integrating data visualization with data mining complements texts in each of these fields, such as Advances in Knowledge Discovery and Data Mining (Fayyad et al., MIT Press) and Readings in Information Visualization: Using Vision to Think (Card et. al., Morgan Kauffman). This unique work is a good starting point for future interaction between researchers in the fields of data visualization and data mining and makes a good accompaniment for a course focused an integrating these areas or to the main reference texts in these fields."
  2. Mining text data (2012) 0.00
    0.0038452265 = product of:
      0.026916584 = sum of:
        0.013458292 = weight(_text_:classification in 362) [ClassicSimilarity], result of:
          0.013458292 = score(doc=362,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.14074548 = fieldWeight in 362, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03125 = fieldNorm(doc=362)
        0.013458292 = weight(_text_:classification in 362) [ClassicSimilarity], result of:
          0.013458292 = score(doc=362,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.14074548 = fieldWeight in 362, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03125 = fieldNorm(doc=362)
      0.14285715 = coord(2/14)
    
    Content
    Inhalt: An Introduction to Text Mining.- Information Extraction from Text.- A Survey of Text Summarization Techniques.- A Survey of Text Clustering Algorithms.- Dimensionality Reduction and Topic Modeling.- A Survey of Text Classification Algorithms.- Transfer Learning for Text Mining.- Probabilistic Models for Text Mining.- Mining Text Streams.- Translingual Mining from Text Data.- Text Mining in Multimedia.- Text Analytics in Social Media.- A Survey of Opinion Mining and Sentiment Analysis.- Biomedical Text Mining: A Survey of Recent Progress.- Index.
  3. Next generation search engines : advanced models for information retrieval (2012) 0.00
    0.0024032665 = product of:
      0.016822865 = sum of:
        0.008411433 = weight(_text_:classification in 357) [ClassicSimilarity], result of:
          0.008411433 = score(doc=357,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.08796592 = fieldWeight in 357, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
        0.008411433 = weight(_text_:classification in 357) [ClassicSimilarity], result of:
          0.008411433 = score(doc=357,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.08796592 = fieldWeight in 357, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
      0.14285715 = coord(2/14)
    
    Abstract
    With the rapid growth of web-based applications, such as search engines, Facebook, and Twitter, the development of effective and personalized information retrieval techniques and of user interfaces is essential. The amount of shared information and of social networks has also considerably grown, requiring metadata for new sources of information, like Wikipedia and ODP. These metadata have to provide classification information for a wide range of topics, as well as for social networking sites like Twitter, and Facebook, each of which provides additional preferences, tagging information and social contexts. Due to the explosion of social networks and other metadata sources, it is an opportune time to identify ways to exploit such metadata in IR tasks such as user modeling, query understanding, and personalization, to name a few. Although the use of traditional metadata such as html text, web page titles, and anchor text is fairly well-understood, the use of category information, user behavior data, and geographical information is just beginning to be studied. This book is intended for scientists and decision-makers who wish to gain working knowledge about search engines in order to evaluate available solutions and to dialogue with software and data providers.
  4. Tonkin, E.L.; Tourte, G.J.L.: Working with text. tools, techniques and approaches for text mining (2016) 0.00
    0.001780432 = product of:
      0.024926046 = sum of:
        0.024926046 = product of:
          0.04985209 = sum of:
            0.04985209 = weight(_text_:texts in 4019) [ClassicSimilarity], result of:
              0.04985209 = score(doc=4019,freq=2.0), product of:
                0.16460659 = queryWeight, product of:
                  5.4822793 = idf(docFreq=499, maxDocs=44218)
                  0.03002521 = queryNorm
                0.302856 = fieldWeight in 4019, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4822793 = idf(docFreq=499, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4019)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Abstract
    What is text mining, and how can it be used? What relevance do these methods have to everyday work in information science and the digital humanities? How does one develop competences in text mining? Working with Text provides a series of cross-disciplinary perspectives on text mining and its applications. As text mining raises legal and ethical issues, the legal background of text mining and the responsibilities of the engineer are discussed in this book. Chapters provide an introduction to the use of the popular GATE text mining package with data drawn from social media, the use of text mining to support semantic search, the development of an authority system to support content tagging, and recent techniques in automatic language evaluation. Focused studies describe text mining on historical texts, automated indexing using constrained vocabularies, and the use of natural language processing to explore the climate science literature. Interviews are included that offer a glimpse into the real-life experience of working within commercial and academic text mining.
  5. Semantic applications (2018) 0.00
    0.001780432 = product of:
      0.024926046 = sum of:
        0.024926046 = product of:
          0.04985209 = sum of:
            0.04985209 = weight(_text_:texts in 5204) [ClassicSimilarity], result of:
              0.04985209 = score(doc=5204,freq=2.0), product of:
                0.16460659 = queryWeight, product of:
                  5.4822793 = idf(docFreq=499, maxDocs=44218)
                  0.03002521 = queryNorm
                0.302856 = fieldWeight in 5204, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4822793 = idf(docFreq=499, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5204)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Content
    Introduction.- Ontology Development.- Compliance using Metadata.- Variety Management for Big Data.- Text Mining in Economics.- Generation of Natural Language Texts.- Sentiment Analysis.- Building Concise Text Corpora from Web Contents.- Ontology-Based Modelling of Web Content.- Personalized Clinical Decision Support for Cancer Care.- Applications of Temporal Conceptual Semantic Systems.- Context-Aware Documentation in the Smart Factory.- Knowledge-Based Production Planning for Industry 4.0.- Information Exchange in Jurisdiction.- Supporting Automated License Clearing.- Managing cultural assets: Implementing typical cultural heritage archive's usage scenarios via Semantic Web technologies.- Semantic Applications for Process Management.- Domain-Specific Semantic Search Applications.
  6. Stuart, D.: Web metrics for library and information professionals (2014) 0.00
    0.001256926 = product of:
      0.017596964 = sum of:
        0.017596964 = weight(_text_:bibliographic in 2274) [ClassicSimilarity], result of:
          0.017596964 = score(doc=2274,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.15054363 = fieldWeight in 2274, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2274)
      0.071428575 = coord(1/14)
    
    Content
    1. Introduction. MetricsIndicators -- Web metrics and Ranganathan's laws of library science -- Web metrics for the library and information professional -- The aim of this book -- The structure of the rest of this book -- 2. Bibliometrics, webometrics and web metrics. Web metrics -- Information science metrics -- Web analytics -- Relational and evaluative metrics -- Evaluative web metrics -- Relational web metrics -- Validating the results -- 3. Data collection tools. The anatomy of a URL, web links and the structure of the web -- Search engines 1.0 -- Web crawlers -- Search engines 2.0 -- Post search engine 2.0: fragmentation -- 4. Evaluating impact on the web. Websites -- Blogs -- Wikis -- Internal metrics -- External metrics -- A systematic approach to content analysis -- 5. Evaluating social media impact. Aspects of social network sites -- Typology of social network sites -- Research and tools for specific sites and services -- Other social network sites -- URL shorteners: web analytic links on any site -- General social media impact -- Sentiment analysis -- 6. Investigating relationships between actors. Social network analysis methods -- Sources for relational network analysis -- 7. Exploring traditional publications in a new environment. More bibliographic items -- Full text analysis -- Greater context -- 8. Web metrics and the web of data. The web of data -- Building the semantic web -- Implications of the web of data for web metrics -- Investigating the web of data today -- SPARQL -- Sindice -- LDSpider: an RDF web crawler -- 9. The future of web metrics and the library and information professional. How far we have come -- The future of web metrics -- The future of the library and information professional and web metrics.

Types