Search (8 results, page 1 of 1)

  • × theme_ss:"Konzeption und Anwendung des Prinzips Thesaurus"
  • × theme_ss:"Wissensrepräsentation"
  1. Rolland-Thomas, P.: Thesaural codes : an appraisal of their use in the Library of Congress Subject Headings (1993) 0.02
    0.016290301 = product of:
      0.0760214 = sum of:
        0.0379556 = weight(_text_:subject in 549) [ClassicSimilarity], result of:
          0.0379556 = score(doc=549,freq=10.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.35344344 = fieldWeight in 549, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03125 = fieldNorm(doc=549)
        0.0190329 = weight(_text_:classification in 549) [ClassicSimilarity], result of:
          0.0190329 = score(doc=549,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.19904417 = fieldWeight in 549, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03125 = fieldNorm(doc=549)
        0.0190329 = weight(_text_:classification in 549) [ClassicSimilarity], result of:
          0.0190329 = score(doc=549,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.19904417 = fieldWeight in 549, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03125 = fieldNorm(doc=549)
      0.21428572 = coord(3/14)
    
    Abstract
    LCSH is known as such since 1975. It always has created headings to serve the LC collections instead of a theoretical basis. It started to replace cross reference codes by thesaural codes in 1986, in a mechanical fashion. It was in no way transformed into a thesaurus. Its encyclopedic coverage, its pre-coordinate concepts make it substantially distinct, considering that thesauri usually map a restricted field of knowledge and use uniterms. The questions raised are whether the new symbols comply with thesaurus standards and if they are true to one or to several models. Explanations and definitions from other lists of subject headings and thesauri, literature in the field of classification and subject indexing will provide some answers. For instance, see refers from a subject heading not used to another or others used. Exceptionally it will lead from a specific term to a more general one. Some equate a see reference with the equivalence relationship. Such relationships are pointed by USE in LCSH. See also references are made from the broader subject to narrower parts of it and also between associated subjects. They suggest lateral or vertical connexions as well as reciprocal relationships. They serve a coordination purpose for some, lay down a methodical search itinerary for others. Since their inception in the 1950's thesauri have been devised for indexing and retrieving information in the fields of science and technology. Eventually they attended to a number of social sciences and humanities. Research derived from thesauri was voluminous. Numerous guidelines are designed. They did not discriminate between the "hard" sciences and the social sciences. RT relationships are widely but diversely used in numerous controlled vocabularies. LCSH's aim is to achieve a list almost free of RT and SA references. It thus restricts relationships to BT/NT, USE and UF. This raises the question as to whether all fields of knowledge can "fit" in the Procrustean bed of RT/NT, i.e., genus/species relationships. Standard codes were devised. It was soon realized that BT/NT, well suited to the genus/species couple could not signal a whole-part relationship. In LCSH, BT and NT function as reciprocals, the whole-part relationship is taken into account by ISO. It is amply elaborated upon by authors. The part-whole connexion is sometimes studied apart. The decision to replace cross reference codes was an improvement. Relations can now be distinguished through the distinct needs of numerous fields of knowledge are not attended to. Topic inclusion, and topic-subtopic, could provide the missing link where genus/species or whole/part are inadequate. Distinct codes, BT/NT and whole/part, should be provided. Sorting relationships with mechanical means can only lead to confusion.
    Source
    Cataloging and classification quarterly. 16(1993) no.2, S.71-91
  2. Curras, E.: Ontologies, taxonomy and thesauri in information organisation and retrieval (2010) 0.01
    0.014742874 = product of:
      0.06880008 = sum of:
        0.021217827 = weight(_text_:subject in 3276) [ClassicSimilarity], result of:
          0.021217827 = score(doc=3276,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.19758089 = fieldWeight in 3276, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3276)
        0.023791125 = weight(_text_:classification in 3276) [ClassicSimilarity], result of:
          0.023791125 = score(doc=3276,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.24880521 = fieldWeight in 3276, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3276)
        0.023791125 = weight(_text_:classification in 3276) [ClassicSimilarity], result of:
          0.023791125 = score(doc=3276,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.24880521 = fieldWeight in 3276, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3276)
      0.21428572 = coord(3/14)
    
    Abstract
    The originality of this book, which deals with such a new subject matter, lies in the application of methods and concepts never used before - such as Ontologies and Taxonomies, as well as Thesauri - to the ordering of knowledge based on primary information. Chapters in the book also examine the study of Ontologies, Taxonomies and Thesauri from the perspective of Systematics and General Systems Theory. "Ontologies, Taxonomy and Thesauri in Information Organisation and Retrieval" will be extremely useful to those operating within the network of related fields, which includes Documentation and Information Science.
    Content
    Inhalt: 1. From classifications to ontologies Knowledge - A new concept of knowledge - Knowledge and information - Knowledge organisation - Knowledge organisation and representation - Cognitive sciences - Talent management - Learning systematisation - Historical evolution - From classification to knowledge organisation - Why ontologies exist - Ontologies - The structure of ontologies 2. Taxonomies and thesauri From ordering to taxonomy - The origins of taxonomy - Hierarchical and horizontal order - Correlation with classifications - Taxonomy in computer science - Computing taxonomy - Definitions - Virtual taxonomy, cybernetic taxonomy - Taxonomy in Information Science - Similarities between taxonomies and thesauri - ifferences between taxonomies and thesauri 3. Thesauri Terminology in classification systems - Terminological languages - Thesauri - Thesauri definitions - Conditions that a thesaurus must fulfil - Historical evolution - Classes of thesauri 4. Thesauri in (cladist) systematics Systematics - Systematics as a noun - Definitions and historic evolution over time - Differences between taxonomy and systematics - Systematics in thesaurus construction theory - Classic, numerical and cladist systematics - Classic systematics in information science - Numerical systematics in information science - Thesauri in cladist systematics - Systematics in information technology - Some examples 5. Thesauri in systems theory Historical evolution - Approach to systems - Systems theory applied to the construction of thesauri - Components - Classes of system - Peculiarities of these systems - Working methods - Systems theory applied to ontologies and taxonomies
  3. ISO 25964 Thesauri and interoperability with other vocabularies (2008) 0.01
    0.009171136 = product of:
      0.04279863 = sum of:
        0.0142746745 = weight(_text_:classification in 1169) [ClassicSimilarity], result of:
          0.0142746745 = score(doc=1169,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.14928313 = fieldWeight in 1169, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1169)
        0.01424928 = product of:
          0.02849856 = sum of:
            0.02849856 = weight(_text_:schemes in 1169) [ClassicSimilarity], result of:
              0.02849856 = score(doc=1169,freq=2.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.17737058 = fieldWeight in 1169, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1169)
          0.5 = coord(1/2)
        0.0142746745 = weight(_text_:classification in 1169) [ClassicSimilarity], result of:
          0.0142746745 = score(doc=1169,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.14928313 = fieldWeight in 1169, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1169)
      0.21428572 = coord(3/14)
    
    Abstract
    T.1: Today's thesauri are mostly electronic tools, having moved on from the paper-based era when thesaurus standards were first developed. They are built and maintained with the support of software and need to integrate with other software, such as search engines and content management systems. Whereas in the past thesauri were designed for information professionals trained in indexing and searching, today there is a demand for vocabularies that untrained users will find to be intuitive. ISO 25964 makes the transition needed for the world of electronic information management. However, part 1 retains the assumption that human intellect is usually involved in the selection of indexing terms and in the selection of search terms. If both the indexer and the searcher are guided to choose the same term for the same concept, then relevant documents will be retrieved. This is the main principle underlying thesaurus design, even though a thesaurus built for human users may also be applied in situations where computers make the choices. Efficient exchange of data is a vital component of thesaurus management and exploitation. Hence the inclusion in this standard of recommendations for exchange formats and protocols. Adoption of these will facilitate interoperability between thesaurus management systems and the other computer applications, such as indexing and retrieval systems, that will utilize the data. Thesauri are typically used in post-coordinate retrieval systems, but may also be applied to hierarchical directories, pre-coordinate indexes and classification systems. Increasingly, thesaurus applications need to mesh with others, such as automatic categorization schemes, free-text search systems, etc. Part 2 of ISO 25964 describes additional types of structured vocabulary and gives recommendations to enable interoperation of the vocabularies at all stages of the information storage and retrieval process.
    T.2: The ability to identify and locate relevant information among vast collections and other resources is a major and pressing challenge today. Several different types of vocabulary are in use for this purpose. Some of the most widely used vocabularies were designed a hundred years ago and have been evolving steadily. A different generation of vocabularies is now emerging, designed to exploit the electronic media more effectively. A good understanding of the previous generation is still essential for effective access to collections indexed with them. An important object of ISO 25964 as a whole is to support data exchange and other forms of interoperability in circumstances in which more than one structured vocabulary is applied within one retrieval system or network. Sometimes one vocabulary has to be mapped to another, and it is important to understand both the potential and the limitations of such mappings. In other systems, a thesaurus is mapped to a classification scheme, or an ontology to a thesaurus. Comprehensive interoperability needs to cover the whole range of vocabulary types, whether young or old. Concepts in different vocabularies are related only in that they have the same or similar meaning. However, the meaning can be found in a number of different aspects within each particular type of structured vocabulary: - within terms or captions selected in different languages; - in the notation assigned indicating a place within a larger hierarchy; - in the definition, scope notes, history notes and other notes that explain the significance of that concept; and - in explicit relationships to other concepts or entities within the same vocabulary. In order to create mappings from one structured vocabulary to another it is first necessary to understand, within the context of each different type of structured vocabulary, the significance and relative importance of each of the different elements in defining the meaning of that particular concept. ISO 25964-1 describes the key characteristics of thesauri along with additional advice on best practice. ISO 25964-2 focuses on other types of vocabulary and does not attempt to cover all aspects of good practice. It concentrates on those aspects which need to be understood if one of the vocabularies is to work effectively alongside one or more of the others. Recognizing that a new standard cannot be applied to some existing vocabularies, this part of ISO 25964 provides informative description alongside the recommendations, the aim of which is to enable users and system developers to interpret and implement the existing vocabularies effectively. The remainder of ISO 25964-2 deals with the principles and practicalities of establishing mappings between vocabularies.
  4. Garshol, L.M.: Metadata? Thesauri? Taxonomies? Topic Maps! : making sense of it all (2005) 0.01
    0.00576784 = product of:
      0.04037488 = sum of:
        0.02018744 = weight(_text_:classification in 4729) [ClassicSimilarity], result of:
          0.02018744 = score(doc=4729,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 4729, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4729)
        0.02018744 = weight(_text_:classification in 4729) [ClassicSimilarity], result of:
          0.02018744 = score(doc=4729,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 4729, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4729)
      0.14285715 = coord(2/14)
    
    Abstract
    The task of an information architect is to create web sites where users can actually find the information they are looking for. As the ocean of information rises and leaves what we seek ever more deeply buried in what we don't seek, this discipline becomes ever more relevant. Information architecture involves many different aspects of web site creation and organization, but its principal tools are information organization techniques developed in other disciplines. Most of these techniques come from library science, such as thesauri, taxonomies, and faceted classification. Topic maps are a relative newcomer to this area and bring with them the promise of better-organized web sites, compared to what is possible with existing techniques. However, it is not generally understood how topic maps relate to the traditional techniques, and what advantages and disadvantages they have, compared to these techniques. The aim of this paper is to help build a better understanding of these issues.
  5. Kless, D.; Milton, S.; Kazmierczak, E.; Lindenthal, J.: Thesaurus and ontology structure : formal and pragmatic differences and similarities (2015) 0.00
    0.0015155592 = product of:
      0.021217827 = sum of:
        0.021217827 = weight(_text_:subject in 2036) [ClassicSimilarity], result of:
          0.021217827 = score(doc=2036,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.19758089 = fieldWeight in 2036, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2036)
      0.071428575 = coord(1/14)
    
    Abstract
    Thesauri and other types of controlled vocabularies are increasingly re-engineered into ontologies described using the Web Ontology Language (OWL), particularly in the life sciences. This has led to the perception by some that thesauri are ontologies once they are described by using the syntax of OWL while others have emphasized the need to re-engineer a vocabulary to use it as ontology. This confusion is rooted in different perceptions of what ontologies are and how they differ from other types of vocabularies. In this article, we rigorously examine the structural differences and similarities between thesauri and meaning-defining ontologies described in OWL. Specifically, we conduct (a) a conceptual comparison of thesauri and ontologies, and (b) a comparison of a specific thesaurus and a specific ontology in the same subject field. Our results show that thesauri and ontologies need to be treated as 2 orthogonal kinds of models with superficially similar structures. An ontology is not a good thesaurus, nor is a thesaurus a good ontology. A thesaurus requires significant structural and other content changes to become an ontology, and vice versa.
  6. Tudhope, D.; Hodge, G.: Terminology registries (2007) 0.00
    0.0014528577 = product of:
      0.020340007 = sum of:
        0.020340007 = product of:
          0.040680014 = sum of:
            0.040680014 = weight(_text_:22 in 539) [ClassicSimilarity], result of:
              0.040680014 = score(doc=539,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.38690117 = fieldWeight in 539, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=539)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    26.12.2011 13:22:07
  7. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2010) 0.00
    0.0010170004 = product of:
      0.014238005 = sum of:
        0.014238005 = product of:
          0.02847601 = sum of:
            0.02847601 = weight(_text_:22 in 4792) [ClassicSimilarity], result of:
              0.02847601 = score(doc=4792,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.2708308 = fieldWeight in 4792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4792)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  8. Müller, T.: Wissensrepräsentation mit semantischen Netzen im Bereich Luftfahrt (2006) 0.00
    7.264289E-4 = product of:
      0.010170003 = sum of:
        0.010170003 = product of:
          0.020340007 = sum of:
            0.020340007 = weight(_text_:22 in 1670) [ClassicSimilarity], result of:
              0.020340007 = score(doc=1670,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.19345059 = fieldWeight in 1670, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1670)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    26. 9.2006 21:00:22