Search (45 results, page 1 of 3)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"el"
  1. SKOS Simple Knowledge Organization System Primer (2009) 0.04
    0.035095256 = product of:
      0.122833386 = sum of:
        0.02546139 = weight(_text_:subject in 4795) [ClassicSimilarity], result of:
          0.02546139 = score(doc=4795,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.23709705 = fieldWeight in 4795, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=4795)
        0.02018744 = weight(_text_:classification in 4795) [ClassicSimilarity], result of:
          0.02018744 = score(doc=4795,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 4795, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4795)
        0.05699712 = product of:
          0.11399424 = sum of:
            0.11399424 = weight(_text_:schemes in 4795) [ClassicSimilarity], result of:
              0.11399424 = score(doc=4795,freq=8.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.7094823 = fieldWeight in 4795, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4795)
          0.5 = coord(1/2)
        0.02018744 = weight(_text_:classification in 4795) [ClassicSimilarity], result of:
          0.02018744 = score(doc=4795,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 4795, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4795)
      0.2857143 = coord(4/14)
    
    Abstract
    SKOS (Simple Knowledge Organisation System) provides a model for expressing the basic structure and content of concept schemes such as thesauri, classification schemes, subject heading lists, taxonomies, folksonomies, and other types of controlled vocabulary. As an application of the Resource Description Framework (RDF) SKOS allows concepts to be documented, linked and merged with other data, while still being composed, integrated and published on the World Wide Web. This document is an implementors guide for those who would like to represent their concept scheme using SKOS. In basic SKOS, conceptual resources (concepts) can be identified using URIs, labelled with strings in one or more natural languages, documented with various types of notes, semantically related to each other in informal hierarchies and association networks, and aggregated into distinct concept schemes. In advanced SKOS, conceptual resources can be mapped to conceptual resources in other schemes and grouped into labelled or ordered collections. Concept labels can also be related to each other. Finally, the SKOS vocabulary itself can be extended to suit the needs of particular communities of practice.
  2. SKOS Core Guide (2005) 0.03
    0.032913495 = product of:
      0.11519723 = sum of:
        0.02546139 = weight(_text_:subject in 4689) [ClassicSimilarity], result of:
          0.02546139 = score(doc=4689,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.23709705 = fieldWeight in 4689, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=4689)
        0.02018744 = weight(_text_:classification in 4689) [ClassicSimilarity], result of:
          0.02018744 = score(doc=4689,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 4689, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4689)
        0.049360957 = product of:
          0.098721914 = sum of:
            0.098721914 = weight(_text_:schemes in 4689) [ClassicSimilarity], result of:
              0.098721914 = score(doc=4689,freq=6.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.6144297 = fieldWeight in 4689, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4689)
          0.5 = coord(1/2)
        0.02018744 = weight(_text_:classification in 4689) [ClassicSimilarity], result of:
          0.02018744 = score(doc=4689,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 4689, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4689)
      0.2857143 = coord(4/14)
    
    Abstract
    SKOS Core provides a model for expressing the basic structure and content of concept schemes such as thesauri, classification schemes, subject heading lists, taxonomies, 'folksonomies', other types of controlled vocabulary, and also concept schemes embedded in glossaries and terminologies. The SKOS Core Vocabulary is an application of the Resource Description Framework (RDF), that can be used to express a concept scheme as an RDF graph. Using RDF allows data to be linked to and/or merged with other data, enabling data sources to be distributed across the web, but still be meaningfully composed and integrated. This document is a guide using the SKOS Core Vocabulary, for readers who already have a basic understanding of RDF concepts. This edition of the SKOS Core Guide [SKOS Core Guide] is a W3C Public Working Draft. It is the authoritative guide to recommended usage of the SKOS Core Vocabulary at the time of publication.
  3. Giunchiglia, F.; Zaihrayeu, I.; Farazi, F.: Converting classifications into OWL ontologies (2009) 0.03
    0.02992327 = product of:
      0.13964193 = sum of:
        0.045140486 = weight(_text_:classification in 4690) [ClassicSimilarity], result of:
          0.045140486 = score(doc=4690,freq=10.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.4720747 = fieldWeight in 4690, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4690)
        0.049360957 = product of:
          0.098721914 = sum of:
            0.098721914 = weight(_text_:schemes in 4690) [ClassicSimilarity], result of:
              0.098721914 = score(doc=4690,freq=6.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.6144297 = fieldWeight in 4690, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4690)
          0.5 = coord(1/2)
        0.045140486 = weight(_text_:classification in 4690) [ClassicSimilarity], result of:
          0.045140486 = score(doc=4690,freq=10.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.4720747 = fieldWeight in 4690, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4690)
      0.21428572 = coord(3/14)
    
    Abstract
    Classification schemes, such as the DMoZ web directory, provide a convenient and intuitive way for humans to access classified contents. While being easy to be dealt with for humans, classification schemes remain hard to be reasoned about by automated software agents. Among other things, this hardness is conditioned by the ambiguous na- ture of the natural language used to describe classification categories. In this paper we describe how classification schemes can be converted into OWL ontologies, thus enabling reasoning on them by Semantic Web applications. The proposed solution is based on a two phase approach in which category names are first encoded in a concept language and then, together with the structure of the classification scheme, are converted into an OWL ontology. We demonstrate the practical applicability of our approach by showing how the results of reasoning on these OWL ontologies can help improve the organization and use of web directories.
  4. Frické, M.: Logical division (2016) 0.03
    0.028953599 = product of:
      0.10133759 = sum of:
        0.030006537 = weight(_text_:subject in 3183) [ClassicSimilarity], result of:
          0.030006537 = score(doc=3183,freq=4.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.27942157 = fieldWeight in 3183, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3183)
        0.023791125 = weight(_text_:classification in 3183) [ClassicSimilarity], result of:
          0.023791125 = score(doc=3183,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.24880521 = fieldWeight in 3183, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3183)
        0.0237488 = product of:
          0.0474976 = sum of:
            0.0474976 = weight(_text_:schemes in 3183) [ClassicSimilarity], result of:
              0.0474976 = score(doc=3183,freq=2.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.2956176 = fieldWeight in 3183, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3183)
          0.5 = coord(1/2)
        0.023791125 = weight(_text_:classification in 3183) [ClassicSimilarity], result of:
          0.023791125 = score(doc=3183,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.24880521 = fieldWeight in 3183, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3183)
      0.2857143 = coord(4/14)
    
    Abstract
    Division is obviously important to Knowledge Organization. Typically, an organizational infrastructure might acknowledge three types of connecting relationships: class hierarchies, where some classes are subclasses of others, partitive hierarchies, where some items are parts of others, and instantiation, where some items are members of some classes (see Z39.19 ANSI/NISO 2005 as an example). The first two of these involve division (the third, instantiation, does not involve division). Logical division would usually be a part of hierarchical classification systems, which, in turn, are central to shelving in libraries, to subject classification schemes, to controlled vocabularies, and to thesauri. Partitive hierarchies, and partitive division, are often essential to controlled vocabularies, thesauri, and subject tagging systems. Partitive hierarchies also relate to the bearers of information; for example, a journal would typically have its component articles as parts and, in turn, they might have sections as their parts, and, of course, components might be arrived at by partitive division (see Tillett 2009 as an illustration). Finally, verbal division, disambiguating homographs, is basic to controlled vocabularies. Thus Division is a broad and relevant topic. This article, though, is going to focus on Logical Division.
  5. Quick Guide to Publishing a Classification Scheme on the Semantic Web (2008) 0.03
    0.02731208 = product of:
      0.12745637 = sum of:
        0.047104023 = weight(_text_:classification in 3061) [ClassicSimilarity], result of:
          0.047104023 = score(doc=3061,freq=8.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.49260917 = fieldWeight in 3061, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3061)
        0.03324832 = product of:
          0.06649664 = sum of:
            0.06649664 = weight(_text_:schemes in 3061) [ClassicSimilarity], result of:
              0.06649664 = score(doc=3061,freq=2.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.41386467 = fieldWeight in 3061, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3061)
          0.5 = coord(1/2)
        0.047104023 = weight(_text_:classification in 3061) [ClassicSimilarity], result of:
          0.047104023 = score(doc=3061,freq=8.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.49260917 = fieldWeight in 3061, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3061)
      0.21428572 = coord(3/14)
    
    Abstract
    This document describes in brief how to express the content and structure of a classification scheme, and metadata about a classification scheme, in RDF using the SKOS vocabulary. RDF allows data to be linked to and/or merged with other RDF data by semantic web applications. The Semantic Web, which is based on the Resource Description Framework (RDF), provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries. Publishing classifications schemes in SKOS will unify the great many of existing classification efforts in the framework of the Semantic Web.
  6. SKOS Simple Knowledge Organization System Reference : W3C Recommendation 18 August 2009 (2009) 0.03
    0.026952809 = product of:
      0.094334826 = sum of:
        0.02546139 = weight(_text_:subject in 4688) [ClassicSimilarity], result of:
          0.02546139 = score(doc=4688,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.23709705 = fieldWeight in 4688, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=4688)
        0.02018744 = weight(_text_:classification in 4688) [ClassicSimilarity], result of:
          0.02018744 = score(doc=4688,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 4688, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4688)
        0.02849856 = product of:
          0.05699712 = sum of:
            0.05699712 = weight(_text_:schemes in 4688) [ClassicSimilarity], result of:
              0.05699712 = score(doc=4688,freq=2.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.35474116 = fieldWeight in 4688, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4688)
          0.5 = coord(1/2)
        0.02018744 = weight(_text_:classification in 4688) [ClassicSimilarity], result of:
          0.02018744 = score(doc=4688,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 4688, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4688)
      0.2857143 = coord(4/14)
    
    Abstract
    This document defines the Simple Knowledge Organization System (SKOS), a common data model for sharing and linking knowledge organization systems via the Web. Many knowledge organization systems, such as thesauri, taxonomies, classification schemes and subject heading systems, share a similar structure, and are used in similar applications. SKOS captures much of this similarity and makes it explicit, to enable data and technology sharing across diverse applications. The SKOS data model provides a standard, low-cost migration path for porting existing knowledge organization systems to the Semantic Web. SKOS also provides a lightweight, intuitive language for developing and sharing new knowledge organization systems. It may be used on its own, or in combination with formal knowledge representation languages such as the Web Ontology language (OWL). This document is the normative specification of the Simple Knowledge Organization System. It is intended for readers who are involved in the design and implementation of information systems, and who already have a good understanding of Semantic Web technology, especially RDF and OWL. For an informative guide to using SKOS, see the [SKOS-PRIMER].
  7. Jacobs, I.: From chaos, order: W3C standard helps organize knowledge : SKOS Connects Diverse Knowledge Organization Systems to Linked Data (2009) 0.02
    0.023840893 = product of:
      0.08344312 = sum of:
        0.03638099 = weight(_text_:subject in 3062) [ClassicSimilarity], result of:
          0.03638099 = score(doc=3062,freq=12.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.33878064 = fieldWeight in 3062, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3062)
        0.011776006 = weight(_text_:classification in 3062) [ClassicSimilarity], result of:
          0.011776006 = score(doc=3062,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.12315229 = fieldWeight in 3062, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3062)
        0.023510113 = product of:
          0.047020227 = sum of:
            0.047020227 = weight(_text_:schemes in 3062) [ClassicSimilarity], result of:
              0.047020227 = score(doc=3062,freq=4.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.29264653 = fieldWeight in 3062, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3062)
          0.5 = coord(1/2)
        0.011776006 = weight(_text_:classification in 3062) [ClassicSimilarity], result of:
          0.011776006 = score(doc=3062,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.12315229 = fieldWeight in 3062, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3062)
      0.2857143 = coord(4/14)
    
    Abstract
    18 August 2009 -- Today W3C announces a new standard that builds a bridge between the world of knowledge organization systems - including thesauri, classifications, subject headings, taxonomies, and folksonomies - and the linked data community, bringing benefits to both. Libraries, museums, newspapers, government portals, enterprises, social networking applications, and other communities that manage large collections of books, historical artifacts, news reports, business glossaries, blog entries, and other items can now use Simple Knowledge Organization System (SKOS) to leverage the power of linked data. As different communities with expertise and established vocabularies use SKOS to integrate them into the Semantic Web, they increase the value of the information for everyone.
    Content
    SKOS Adapts to the Diversity of Knowledge Organization Systems A useful starting point for understanding the role of SKOS is the set of subject headings published by the US Library of Congress (LOC) for categorizing books, videos, and other library resources. These headings can be used to broaden or narrow queries for discovering resources. For instance, one can narrow a query about books on "Chinese literature" to "Chinese drama," or further still to "Chinese children's plays." Library of Congress subject headings have evolved within a community of practice over a period of decades. By now publishing these subject headings in SKOS, the Library of Congress has made them available to the linked data community, which benefits from a time-tested set of concepts to re-use in their own data. This re-use adds value ("the network effect") to the collection. When people all over the Web re-use the same LOC concept for "Chinese drama," or a concept from some other vocabulary linked to it, this creates many new routes to the discovery of information, and increases the chances that relevant items will be found. As an example of mapping one vocabulary to another, a combined effort from the STITCH, TELplus and MACS Projects provides links between LOC concepts and RAMEAU, a collection of French subject headings used by the Bibliothèque Nationale de France and other institutions. SKOS can be used for subject headings but also many other approaches to organizing knowledge. Because different communities are comfortable with different organization schemes, SKOS is designed to port diverse knowledge organization systems to the Web. "Active participation from the library and information science community in the development of SKOS over the past seven years has been key to ensuring that SKOS meets a variety of needs," said Thomas Baker, co-chair of the Semantic Web Deployment Working Group, which published SKOS. "One goal in creating SKOS was to provide new uses for well-established knowledge organization systems by providing a bridge to the linked data cloud." SKOS is part of the Semantic Web technology stack. Like the Web Ontology Language (OWL), SKOS can be used to define vocabularies. But the two technologies were designed to meet different needs. SKOS is a simple language with just a few features, tuned for sharing and linking knowledge organization systems such as thesauri and classification schemes. OWL offers a general and powerful framework for knowledge representation, where additional "rigor" can afford additional benefits (for instance, business rule processing). To get started with SKOS, see the SKOS Primer.
  8. Panzer, M.: Towards the "webification" of controlled subject vocabulary : a case study involving the Dewey Decimal Classification (2007) 0.02
    0.023276636 = product of:
      0.1086243 = sum of:
        0.042009152 = weight(_text_:subject in 538) [ClassicSimilarity], result of:
          0.042009152 = score(doc=538,freq=4.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.3911902 = fieldWeight in 538, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0546875 = fieldNorm(doc=538)
        0.033307575 = weight(_text_:classification in 538) [ClassicSimilarity], result of:
          0.033307575 = score(doc=538,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.34832728 = fieldWeight in 538, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0546875 = fieldNorm(doc=538)
        0.033307575 = weight(_text_:classification in 538) [ClassicSimilarity], result of:
          0.033307575 = score(doc=538,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.34832728 = fieldWeight in 538, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0546875 = fieldNorm(doc=538)
      0.21428572 = coord(3/14)
    
    Abstract
    The presentation will briefly introduce a series of major principles for bringing subject terminology to the network level. A closer look at one KOS in particular, the Dewey Decimal Classification, should help to gain more insight into the perceived difficulties and potential benefits of building taxonomy services out and on top of classic large-scale vocabularies or taxonomies.
  9. Wilson, T.: ¬The strict faceted classification model (2006) 0.02
    0.01665032 = product of:
      0.11655223 = sum of:
        0.058276117 = weight(_text_:classification in 2836) [ClassicSimilarity], result of:
          0.058276117 = score(doc=2836,freq=6.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.6094458 = fieldWeight in 2836, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.078125 = fieldNorm(doc=2836)
        0.058276117 = weight(_text_:classification in 2836) [ClassicSimilarity], result of:
          0.058276117 = score(doc=2836,freq=6.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.6094458 = fieldWeight in 2836, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.078125 = fieldNorm(doc=2836)
      0.14285715 = coord(2/14)
    
    Abstract
    Faceted classification, at its core, implies orthogonality - that every facet axis exists at right angles to (i.e., independently of) every other facet axis. That's why a faceted classification is sometimes represented with a chart. This set of desserts has been classified by their confection types and, orthogonally, by their flavors.
  10. Priss, U.: Description logic and faceted knowledge representation (1999) 0.01
    0.014850579 = product of:
      0.0693027 = sum of:
        0.028549349 = weight(_text_:classification in 2655) [ClassicSimilarity], result of:
          0.028549349 = score(doc=2655,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.29856625 = fieldWeight in 2655, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=2655)
        0.028549349 = weight(_text_:classification in 2655) [ClassicSimilarity], result of:
          0.028549349 = score(doc=2655,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.29856625 = fieldWeight in 2655, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=2655)
        0.0122040035 = product of:
          0.024408007 = sum of:
            0.024408007 = weight(_text_:22 in 2655) [ClassicSimilarity], result of:
              0.024408007 = score(doc=2655,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.23214069 = fieldWeight in 2655, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2655)
          0.5 = coord(1/2)
      0.21428572 = coord(3/14)
    
    Abstract
    The term "facet" was introduced into the field of library classification systems by Ranganathan in the 1930's [Ranganathan, 1962]. A facet is a viewpoint or aspect. In contrast to traditional classification systems, faceted systems are modular in that a domain is analyzed in terms of baseline facets which are then synthesized. In this paper, the term "facet" is used in a broader meaning. Facets can describe different aspects on the same level of abstraction or the same aspect on different levels of abstraction. The notion of facets is related to database views, multicontexts and conceptual scaling in formal concept analysis [Ganter and Wille, 1999], polymorphism in object-oriented design, aspect-oriented programming, views and contexts in description logic and semantic networks. This paper presents a definition of facets in terms of faceted knowledge representation that incorporates the traditional narrower notion of facets and potentially facilitates translation between different knowledge representation formalisms. A goal of this approach is a modular, machine-aided knowledge base design mechanism. A possible application is faceted thesaurus construction for information retrieval and data mining. Reasoning complexity depends on the size of the modules (facets). A more general analysis of complexity will be left for future research.
    Date
    22. 1.2016 17:30:31
  11. Tzitzikas, Y.; Spyratos, N.; Constantopoulos, P.; Analyti, A.: Extended faceted ontologies (2002) 0.01
    0.014758593 = product of:
      0.068873435 = sum of:
        0.02018744 = weight(_text_:classification in 2280) [ClassicSimilarity], result of:
          0.02018744 = score(doc=2280,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 2280, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=2280)
        0.02849856 = product of:
          0.05699712 = sum of:
            0.05699712 = weight(_text_:schemes in 2280) [ClassicSimilarity], result of:
              0.05699712 = score(doc=2280,freq=2.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.35474116 = fieldWeight in 2280, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2280)
          0.5 = coord(1/2)
        0.02018744 = weight(_text_:classification in 2280) [ClassicSimilarity], result of:
          0.02018744 = score(doc=2280,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 2280, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=2280)
      0.21428572 = coord(3/14)
    
    Abstract
    A faceted ontology consists of a set of facets, where each facet consists of a predefined set of terms structured by a subsumption relation. We propose two extensions of faceted ontologies, which allow inferring conjunctions of terms that are valid in the underlying domain. We give a model-theoretic interpretation to these extended faceted ontologies and we provide mechanisms for inferring the valid conjunctions of terms. This inference service can be exploited for preventing errors during the indexing process and for deriving navigation trees that are suitable for browsing. The proposed scheme has several advantages by comparison to the hierarchical classification schemes that are currently used, namely: conceptual clarity: it is easier to understand, compactness: it takes less space, and scalability: the update operations can be formulated easier and be performed more efficiently.
  12. Prieto-Díaz, R.: ¬A faceted approach to building ontologies (2002) 0.01
    0.014107771 = product of:
      0.065836266 = sum of:
        0.02546139 = weight(_text_:subject in 2259) [ClassicSimilarity], result of:
          0.02546139 = score(doc=2259,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.23709705 = fieldWeight in 2259, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=2259)
        0.02018744 = weight(_text_:classification in 2259) [ClassicSimilarity], result of:
          0.02018744 = score(doc=2259,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 2259, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=2259)
        0.02018744 = weight(_text_:classification in 2259) [ClassicSimilarity], result of:
          0.02018744 = score(doc=2259,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 2259, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=2259)
      0.21428572 = coord(3/14)
    
    Abstract
    An ontology is "an explicit conceptualization of a domain of discourse, and thus provides a shared and common understanding of the domain." We have been producing ontologies for millennia to understand and explain our rationale and environment. From Plato's philosophical framework to modern day classification systems, ontologies are, in most cases, the product of extensive analysis and categorization. Only recently has the process of building ontologies become a research topic of interest. Today, ontologies are built very much ad-hoc. A terminology is first developed providing a controlled vocabulary for the subject area or domain of interest, then it is organized into a taxonomy where key concepts are identified, and finally these concepts are defined and related to create an ontology. The intent of this paper is to show that domain analysis methods can be used for building ontologies. Domain analysis aims at generic models that represent groups of similar systems within an application domain. In this sense, it deals with categorization of common objects and operations, with clear, unambiguous definitions of them and with defining their relationships.
  13. Zeng, M.L.; Zumer, M.: Introducing FRSAD and mapping it with SKOS and other models (2009) 0.01
    0.012980853 = product of:
      0.09086597 = sum of:
        0.062367413 = weight(_text_:subject in 3150) [ClassicSimilarity], result of:
          0.062367413 = score(doc=3150,freq=12.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.5807668 = fieldWeight in 3150, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=3150)
        0.02849856 = product of:
          0.05699712 = sum of:
            0.05699712 = weight(_text_:schemes in 3150) [ClassicSimilarity], result of:
              0.05699712 = score(doc=3150,freq=2.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.35474116 = fieldWeight in 3150, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3150)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Abstract
    The Functional Requirements for Subject Authority Records (FRSAR) Working Group was formed in 2005 as the third IFLA working group of the FRBR family to address subject authority data issues and to investigate the direct and indirect uses of subject authority data by a wide range of users. This paper introduces the Functional Requirements for Subject Authority Data (FRSAD), the model developed by the FRSAR Working Group, and discusses it in the context of other related conceptual models defined in the specifications during recent years, including the British Standard BS8723-5: Structured vocabularies for information retrieval - Guide Part 5: Exchange formats and protocols for interoperability, W3C's SKOS Simple Knowledge Organization System Reference, and OWL Web Ontology Language Reference. These models enable the consideration of the functions of subject authority data and concept schemes at a higher level that is independent of any implementation, system, or specific context, while allowing us to focus on the semantics, structures, and interoperability of subject authority data.
  14. Putkey, T.: Using SKOS to express faceted classification on the Semantic Web (2011) 0.01
    0.0121596735 = product of:
      0.08511771 = sum of:
        0.042558856 = weight(_text_:classification in 311) [ClassicSimilarity], result of:
          0.042558856 = score(doc=311,freq=20.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.4450763 = fieldWeight in 311, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03125 = fieldNorm(doc=311)
        0.042558856 = weight(_text_:classification in 311) [ClassicSimilarity], result of:
          0.042558856 = score(doc=311,freq=20.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.4450763 = fieldWeight in 311, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03125 = fieldNorm(doc=311)
      0.14285715 = coord(2/14)
    
    Abstract
    This paper looks at Simple Knowledge Organization System (SKOS) to investigate how a faceted classification can be expressed in RDF and shared on the Semantic Web. Statement of the Problem Faceted classification outlines facets as well as subfacets and facet values. Hierarchical relationships and associative relationships are established in a faceted classification. RDF is used to describe how a specific URI has a relationship to a facet value. Not only does RDF decompose "information into pieces," but by incorporating facet values RDF also given the URI the hierarchical and associative relationships expressed in the faceted classification. Combining faceted classification and RDF creates more knowledge than if the two stood alone. An application understands the subjectpredicate-object relationship in RDF and can display hierarchical and associative relationships based on the object (facet) value. This paper continues to investigate if the above idea is indeed useful, used, and applicable. If so, how can a faceted classification be expressed in RDF? What would this expression look like? Literature Review This paper used the same articles as the paper A Survey of Faceted Classification: History, Uses, Drawbacks and the Semantic Web (Putkey, 2010). In that paper, appropriate resources were discovered by searching in various databases for "faceted classification" and "faceted search," either in the descriptor or title fields. Citations were also followed to find more articles as well as searching the Internet for the same terms. To retrieve the documents about RDF, searches combined "faceted classification" and "RDF, " looking for these words in either the descriptor or title.
  15. Wang, Y.-H.; Jhuo, P.-S.: ¬A semantic faceted search with rule-based inference (2009) 0.01
    0.008156957 = product of:
      0.057098698 = sum of:
        0.028549349 = weight(_text_:classification in 540) [ClassicSimilarity], result of:
          0.028549349 = score(doc=540,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.29856625 = fieldWeight in 540, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=540)
        0.028549349 = weight(_text_:classification in 540) [ClassicSimilarity], result of:
          0.028549349 = score(doc=540,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.29856625 = fieldWeight in 540, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=540)
      0.14285715 = coord(2/14)
    
    Abstract
    Semantic Search has become an active research of Semantic Web in recent years. The classification methodology plays a pretty critical role in the beginning of search process to disambiguate irrelevant information. However, the applications related to Folksonomy suffer from many obstacles. This study attempts to eliminate the problems resulted from Folksonomy using existing semantic technology. We also focus on how to effectively integrate heterogeneous ontologies over the Internet to acquire the integrity of domain knowledge. A faceted logic layer is abstracted in order to strengthen category framework and organize existing available ontologies according to a series of steps based on the methodology of faceted classification and ontology construction. The result showed that our approach can facilitate the integration of inconsistent or even heterogeneous ontologies. This paper also generalizes the principles of picking appropriate facets with which our facet browser completely complies so that better semantic search result can be obtained.
  16. Advances in ontologies : Proceedings of the Sixth Australasian Ontology Workshop Adelaide, Australia, 7 December 2010 (2010) 0.01
    0.00576784 = product of:
      0.04037488 = sum of:
        0.02018744 = weight(_text_:classification in 4420) [ClassicSimilarity], result of:
          0.02018744 = score(doc=4420,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 4420, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4420)
        0.02018744 = weight(_text_:classification in 4420) [ClassicSimilarity], result of:
          0.02018744 = score(doc=4420,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 4420, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=4420)
      0.14285715 = coord(2/14)
    
    Content
    Inhalt YAMATO: Yet Another More Advanced Top-level Ontology (invited talk) - Riichiro Mizoguchi A Visual Analytics Approach to Augmenting Formal Concepts with Relational Background Knowledge in a Biological Domain - Elma Akand, Michael Bain, Mark Temple Combining Ontologies And Natural Language - Wolf Fischer, Bernhard Bauer Comparison of Thesauri and Ontologies from a Semiotic Perspective - Daniel Kless, Simon Milton Fast Classification in Protégé: Snorocket as an OWL2 EL Reasoner - Michael Lawley, Cyril Bousquet Ontological Support for Consistency Checking of Engineering Design Workflows - Franz Maier, Wolfgang Mayer, Markus Stumptner Ontology Inferencing Rules and Operations in Conceptual Structure Theory - Philip H.P. Nguyen, Ken Kaneiwa, Minh-Quang Nguyen An Axiomatisation of Basic Formal Ontology with Projection Functions - Kerry Trentelman, Barry Smith Making Sense of Spreadsheet Data: A Case of Semantic Water Data Translation - Yanfeng Shu, David Ratcliffe, Geoffrey Squire, Michael Compton
  17. Tramullas, J.; Garrido-Picazo, P.; Sánchez-Casabón, A.I.: Use of Wikipedia categories on information retrieval research : a brief review (2020) 0.01
    0.00576784 = product of:
      0.04037488 = sum of:
        0.02018744 = weight(_text_:classification in 5365) [ClassicSimilarity], result of:
          0.02018744 = score(doc=5365,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 5365, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=5365)
        0.02018744 = weight(_text_:classification in 5365) [ClassicSimilarity], result of:
          0.02018744 = score(doc=5365,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21111822 = fieldWeight in 5365, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.046875 = fieldNorm(doc=5365)
      0.14285715 = coord(2/14)
    
    Abstract
    Wikipedia categories, a classification scheme built for organizing and describing Wikpedia articles, are being applied in computer science research. This paper adopts a systematic literature review approach, in order to identify different approaches and uses of Wikipedia categories in information retrieval research. Several types of work are identified, depending on the intrinsic study of the categories structure, or its use as a tool for the processing and analysis of other documentary corpus different to Wikipedia. Information retrieval is identified as one of the major areas of use, in particular its application in the refinement and improvement of search expressions, and the construction of textual corpus. However, the set of available works shows that in many cases research approaches applied and results obtained can be integrated into a comprehensive and inclusive concept of information retrieval.
  18. Baker, T.; Bermès, E.; Coyle, K.; Dunsire, G.; Isaac, A.; Murray, P.; Panzer, M.; Schneider, J.; Singer, R.; Summers, E.; Waites, W.; Young, J.; Zeng, M.: Library Linked Data Incubator Group Final Report (2011) 0.01
    0.0055871224 = product of:
      0.039109856 = sum of:
        0.01899904 = product of:
          0.03799808 = sum of:
            0.03799808 = weight(_text_:schemes in 4796) [ClassicSimilarity], result of:
              0.03799808 = score(doc=4796,freq=2.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.2364941 = fieldWeight in 4796, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4796)
          0.5 = coord(1/2)
        0.020110816 = weight(_text_:bibliographic in 4796) [ClassicSimilarity], result of:
          0.020110816 = score(doc=4796,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.17204987 = fieldWeight in 4796, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03125 = fieldNorm(doc=4796)
      0.14285715 = coord(2/14)
    
    Abstract
    The mission of the W3C Library Linked Data Incubator Group, chartered from May 2010 through August 2011, has been "to help increase global interoperability of library data on the Web, by bringing together people involved in Semantic Web activities - focusing on Linked Data - in the library community and beyond, building on existing initiatives, and identifying collaboration tracks for the future." In Linked Data [LINKEDDATA], data is expressed using standards such as Resource Description Framework (RDF) [RDF], which specifies relationships between things, and Uniform Resource Identifiers (URIs, or "Web addresses") [URI]. This final report of the Incubator Group examines how Semantic Web standards and Linked Data principles can be used to make the valuable information assets that library create and curate - resources such as bibliographic data, authorities, and concept schemes - more visible and re-usable outside of their original library context on the wider Web. The Incubator Group began by eliciting reports on relevant activities from parties ranging from small, independent projects to national library initiatives (see the separate report, Library Linked Data Incubator Group: Use Cases) [USECASE]. These use cases provided the starting point for the work summarized in the report: an analysis of the benefits of library Linked Data, a discussion of current issues with regard to traditional library data, existing library Linked Data initiatives, and legal rights over library data; and recommendations for next steps. The report also summarizes the results of a survey of current Linked Data technologies and an inventory of library Linked Data resources available today (see also the more detailed report, Library Linked Data Incubator Group: Datasets, Value Vocabularies, and Metadata Element Sets) [VOCABDATASET].
  19. Miles, A.; Matthews, B.; Beckett, D.; Brickley, D.; Wilson, M.; Rogers, N.: SKOS: A language to describe simple knowledge structures for the web (2005) 0.00
    0.0047582253 = product of:
      0.033307575 = sum of:
        0.016653787 = weight(_text_:classification in 517) [ClassicSimilarity], result of:
          0.016653787 = score(doc=517,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.17416364 = fieldWeight in 517, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.02734375 = fieldNorm(doc=517)
        0.016653787 = weight(_text_:classification in 517) [ClassicSimilarity], result of:
          0.016653787 = score(doc=517,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.17416364 = fieldWeight in 517, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.02734375 = fieldNorm(doc=517)
      0.14285715 = coord(2/14)
    
    Content
    This type of effort is common in the digital library community, where a group of experts will interact with a user community to create a thesaurus for a specific domain (e.g. the Art & Architecture Thesaurus AAT AAT) or an overarching classification scheme (e.g. the Dewey Decimal Classification). A similar type of activity is being undertaken more recently in a less centralised manner by web communities, producing for example the DMOZ web directory DMOZ, or the Topic Exchange for weblog topics Topic Exchange. The web, including the semantic web, provides a medium within which communities can interact and collaboratively build and use vocabularies of concepts. A simple language is required that allows these communities to express the structure and content of their vocabularies in a machine-understandable way, enabling exchange and reuse. The Resource Description Framework (RDF) is an ideal language for making statements about web resources and publishing metadata. However, RDF provides only the low level semantics required to form metadata statements. RDF vocabularies must be built on top of RDF to support the expression of more specific types of information within metadata. Ontology languages such as OWL OWL add a layer of expressive power to RDF, and provide powerful tools for defining complex conceptual structures, which can be used to generate rich metadata. However, the class-oriented, logically precise modelling required to construct useful web ontologies is demanding in terms of expertise, effort, and therefore cost. In many cases this type of modelling may be superfluous or unsuited to requirements. Therefore there is a need for a language for expressing vocabularies of concepts for use in semantically rich metadata, that is powerful enough to support semantically enhanced search, but simple enough to be undemanding in terms of the cost and expertise required to use it."
  20. Veltman, K.H.: Towards a Semantic Web for culture 0.00
    0.0038452265 = product of:
      0.026916584 = sum of:
        0.013458292 = weight(_text_:classification in 4040) [ClassicSimilarity], result of:
          0.013458292 = score(doc=4040,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.14074548 = fieldWeight in 4040, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03125 = fieldNorm(doc=4040)
        0.013458292 = weight(_text_:classification in 4040) [ClassicSimilarity], result of:
          0.013458292 = score(doc=4040,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.14074548 = fieldWeight in 4040, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03125 = fieldNorm(doc=4040)
      0.14285715 = coord(2/14)
    
    Abstract
    Today's semantic web deals with meaning in a very restricted sense and offers static solutions. This is adequate for many scientific, technical purposes and for business transactions requiring machine-to-machine communication, but does not answer the needs of culture. Science, technology and business are concerned primarily with the latest findings, the state of the art, i.e. the paradigm or dominant world-view of the day. In this context, history is considered non-essential because it deals with things that are out of date. By contrast, culture faces a much larger challenge, namely, to re-present changes in ways of knowing; changing meanings in different places at a given time (synchronically) and over time (diachronically). Culture is about both objects and the commentaries on them; about a cumulative body of knowledge; about collective memory and heritage. Here, history plays a central role and older does not mean less important or less relevant. Hence, a Leonardo painting that is 400 years old, or a Greek statue that is 2500 years old, typically have richer commentaries and are often more valuable than their contemporary equivalents. In this context, the science of meaning (semantics) is necessarily much more complex than semantic primitives. A semantic web in the cultural domain must enable us to trace how meaning and knowledge organisation have evolved historically in different cultures. This paper examines five issues to address this challenge: 1) different world-views (i.e. a shift from substance to function and from ontology to multiple ontologies); 2) developments in definitions and meaning; 3) distinctions between words and concepts; 4) new classes of relations; and 5) dynamic models of knowledge organisation. These issues reveal that historical dimensions of cultural diversity in knowledge organisation are also central to classification of biological diversity. New ways are proposed of visualizing knowledge using a time/space horizon to distinguish between universals and particulars. It is suggested that new visualization methods make possible a history of questions as well as of answers, thus enabling dynamic access to cultural and historical dimensions of knowledge. Unlike earlier media, which were limited to recording factual dimensions of collective memory, digital media enable us to explore theories, ways of perceiving, ways of knowing; to enter into other mindsets and world-views and thus to attain novel insights and new levels of tolerance. Some practical consequences are outlined.

Years

Languages

  • e 42
  • d 3
  • More… Less…

Types