Search (14 results, page 1 of 1)

  • × type_ss:"m"
  • × theme_ss:"Wissensrepräsentation"
  1. Frické, M.: Logic and the organization of information (2012) 0.02
    0.020883998 = product of:
      0.07309399 = sum of:
        0.014852478 = weight(_text_:subject in 1782) [ClassicSimilarity], result of:
          0.014852478 = score(doc=1782,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.13830662 = fieldWeight in 1782, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
        0.02039664 = weight(_text_:classification in 1782) [ClassicSimilarity], result of:
          0.02039664 = score(doc=1782,freq=6.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21330604 = fieldWeight in 1782, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
        0.02039664 = weight(_text_:classification in 1782) [ClassicSimilarity], result of:
          0.02039664 = score(doc=1782,freq=6.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.21330604 = fieldWeight in 1782, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
        0.017448233 = product of:
          0.034896467 = sum of:
            0.034896467 = weight(_text_:texts in 1782) [ClassicSimilarity], result of:
              0.034896467 = score(doc=1782,freq=2.0), product of:
                0.16460659 = queryWeight, product of:
                  5.4822793 = idf(docFreq=499, maxDocs=44218)
                  0.03002521 = queryNorm
                0.21199921 = fieldWeight in 1782, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4822793 = idf(docFreq=499, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1782)
          0.5 = coord(1/2)
      0.2857143 = coord(4/14)
    
    Abstract
    Logic and the Organization of Information closely examines the historical and contemporary methodologies used to catalogue information objects-books, ebooks, journals, articles, web pages, images, emails, podcasts and more-in the digital era. This book provides an in-depth technical background for digital librarianship, and covers a broad range of theoretical and practical topics including: classification theory, topic annotation, automatic clustering, generalized synonymy and concept indexing, distributed libraries, semantic web ontologies and Simple Knowledge Organization System (SKOS). It also analyzes the challenges facing today's information architects, and outlines a series of techniques for overcoming them. Logic and the Organization of Information is intended for practitioners and professionals working at a design level as a reference book for digital librarianship. Advanced-level students, researchers and academics studying information science, library science, digital libraries and computer science will also find this book invaluable.
    Footnote
    Rez. in: J. Doc. 70(2014) no.4: "Books on the organization of information and knowledge, aimed at a library/information audience, tend to fall into two clear categories. Most are practical and pragmatic, explaining the "how" as much or more than the "why". Some are theoretical, in part or in whole, showing how the practice of classification, indexing, resource description and the like relates to philosophy, logic, and other foundational bases; the books by Langridge (1992) and by Svenonious (2000) are well-known examples this latter kind. To this category certainly belongs a recent book by Martin Frické (2012). The author takes the reader for an extended tour through a variety of aspects of information organization, including classification and taxonomy, alphabetical vocabularies and indexing, cataloguing and FRBR, and aspects of the semantic web. The emphasis throughout is on showing how practice is, or should be, underpinned by formal structures; there is a particular emphasis on first order predicate calculus. The advantages of a greater, and more explicit, use of symbolic logic is a recurring theme of the book. There is a particularly commendable historical dimension, often omitted in texts on this subject. It cannot be said that this book is entirely an easy read, although it is well written with a helpful index, and its arguments are generally well supported by clear and relevant examples. It is thorough and detailed, but thereby seems better geared to the needs of advanced students and researchers than to the practitioners who are suggested as a main market. For graduate students in library/information science and related disciplines, in particular, this will be a valuable resource. I would place it alongside Svenonious' book as the best insight into the theoretical "why" of information organization. It has evoked a good deal of interest, including a set of essay commentaries in Journal of Information Science (Gilchrist et al., 2013). Introducing these, Alan Gilchrist rightly says that Frické deserves a salute for making explicit the fundamental relationship between the ancient discipline of logic and modern information organization. If information science is to continue to develop, and make a contribution to the organization of the information environments of the future, then this book sets the groundwork for the kind of studies which will be needed." (D. Bawden)
  2. Curras, E.: Ontologies, taxonomy and thesauri in information organisation and retrieval (2010) 0.01
    0.014742874 = product of:
      0.06880008 = sum of:
        0.021217827 = weight(_text_:subject in 3276) [ClassicSimilarity], result of:
          0.021217827 = score(doc=3276,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.19758089 = fieldWeight in 3276, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3276)
        0.023791125 = weight(_text_:classification in 3276) [ClassicSimilarity], result of:
          0.023791125 = score(doc=3276,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.24880521 = fieldWeight in 3276, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3276)
        0.023791125 = weight(_text_:classification in 3276) [ClassicSimilarity], result of:
          0.023791125 = score(doc=3276,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.24880521 = fieldWeight in 3276, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3276)
      0.21428572 = coord(3/14)
    
    Abstract
    The originality of this book, which deals with such a new subject matter, lies in the application of methods and concepts never used before - such as Ontologies and Taxonomies, as well as Thesauri - to the ordering of knowledge based on primary information. Chapters in the book also examine the study of Ontologies, Taxonomies and Thesauri from the perspective of Systematics and General Systems Theory. "Ontologies, Taxonomy and Thesauri in Information Organisation and Retrieval" will be extremely useful to those operating within the network of related fields, which includes Documentation and Information Science.
    Content
    Inhalt: 1. From classifications to ontologies Knowledge - A new concept of knowledge - Knowledge and information - Knowledge organisation - Knowledge organisation and representation - Cognitive sciences - Talent management - Learning systematisation - Historical evolution - From classification to knowledge organisation - Why ontologies exist - Ontologies - The structure of ontologies 2. Taxonomies and thesauri From ordering to taxonomy - The origins of taxonomy - Hierarchical and horizontal order - Correlation with classifications - Taxonomy in computer science - Computing taxonomy - Definitions - Virtual taxonomy, cybernetic taxonomy - Taxonomy in Information Science - Similarities between taxonomies and thesauri - ifferences between taxonomies and thesauri 3. Thesauri Terminology in classification systems - Terminological languages - Thesauri - Thesauri definitions - Conditions that a thesaurus must fulfil - Historical evolution - Classes of thesauri 4. Thesauri in (cladist) systematics Systematics - Systematics as a noun - Definitions and historic evolution over time - Differences between taxonomy and systematics - Systematics in thesaurus construction theory - Classic, numerical and cladist systematics - Classic systematics in information science - Numerical systematics in information science - Thesauri in cladist systematics - Systematics in information technology - Some examples 5. Thesauri in systems theory Historical evolution - Approach to systems - Systems theory applied to the construction of thesauri - Components - Classes of system - Peculiarities of these systems - Working methods - Systems theory applied to ontologies and taxonomies
  3. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.01
    0.008609179 = product of:
      0.04017617 = sum of:
        0.011776006 = weight(_text_:classification in 4515) [ClassicSimilarity], result of:
          0.011776006 = score(doc=4515,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.12315229 = fieldWeight in 4515, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
        0.01662416 = product of:
          0.03324832 = sum of:
            0.03324832 = weight(_text_:schemes in 4515) [ClassicSimilarity], result of:
              0.03324832 = score(doc=4515,freq=2.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.20693234 = fieldWeight in 4515, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4515)
          0.5 = coord(1/2)
        0.011776006 = weight(_text_:classification in 4515) [ClassicSimilarity], result of:
          0.011776006 = score(doc=4515,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.12315229 = fieldWeight in 4515, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
      0.21428572 = coord(3/14)
    
    Abstract
    The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. This book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies. This title combines aspects of knowledge representation for both the Semantic Web (ontologies) and the Web 2.0 (folksonomies). Currently there is no monographic book which provides a combined overview over these topics. focus on the topic of using knowledge representation methods for document indexing purposes. For this purpose, considerations from classical librarian interests in knowledge representation (thesauri, classification schemes etc.) are included, which are not part of most other books which have a stronger background in computer science.
  4. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.01
    0.008043489 = product of:
      0.056304425 = sum of:
        0.044100422 = weight(_text_:subject in 987) [ClassicSimilarity], result of:
          0.044100422 = score(doc=987,freq=6.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.41066417 = fieldWeight in 987, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.0122040035 = product of:
          0.024408007 = sum of:
            0.024408007 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.024408007 = score(doc=987,freq=2.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
      0.14285715 = coord(2/14)
    
    Abstract
    This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve languages as a tool for subject queries and knowledge exploration. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.
    Date
    23. 7.2017 13:49:22
    LCSH
    World Wide Web / Subject access
    Subject
    World Wide Web / Subject access
  5. Baofu, P.: ¬The future of information architecture : conceiving a better way to understand taxonomy, network, and intelligence (2008) 0.01
    0.0067974646 = product of:
      0.04758225 = sum of:
        0.023791125 = weight(_text_:classification in 2257) [ClassicSimilarity], result of:
          0.023791125 = score(doc=2257,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.24880521 = fieldWeight in 2257, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2257)
        0.023791125 = weight(_text_:classification in 2257) [ClassicSimilarity], result of:
          0.023791125 = score(doc=2257,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.24880521 = fieldWeight in 2257, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2257)
      0.14285715 = coord(2/14)
    
    LCSH
    Classification
    Subject
    Classification
  6. Stuart, D.: Practical ontologies for information professionals (2016) 0.00
    0.0047582253 = product of:
      0.033307575 = sum of:
        0.016653787 = weight(_text_:classification in 5152) [ClassicSimilarity], result of:
          0.016653787 = score(doc=5152,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.17416364 = fieldWeight in 5152, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.02734375 = fieldNorm(doc=5152)
        0.016653787 = weight(_text_:classification in 5152) [ClassicSimilarity], result of:
          0.016653787 = score(doc=5152,freq=4.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.17416364 = fieldWeight in 5152, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.02734375 = fieldNorm(doc=5152)
      0.14285715 = coord(2/14)
    
    Abstract
    Practical Ontologies for Information Professionals provides an accessible introduction and exploration of ontologies and demonstrates their value to information professionals. More data and information is being created than ever before. Ontologies, formal representations of knowledge with rich semantic relationships, have become increasingly important in the context of today's information overload and data deluge. The publishing and sharing of explicit explanations for a wide variety of conceptualizations, in a machine readable format, has the power to both improve information retrieval and discover new knowledge. Information professionals are key contributors to the development of new, and increasingly useful, ontologies. Practical Ontologies for Information Professionals provides an accessible introduction to the following: defining the concept of ontologies and why they are increasingly important to information professionals ontologies and the semantic web existing ontologies, such as RDF, RDFS, SKOS, and OWL2 adopting and building ontologies, showing how to avoid repetition of work and how to build a simple ontology interrogating ontologies for reuse the future of ontologies and the role of the information professional in their development and use. This book will be useful reading for information professionals in libraries and other cultural heritage institutions who work with digitalization projects, cataloguing and classification and information retrieval. It will also be useful to LIS students who are new to the field.
    Footnote
    Rez. in: Cataloging and classification quarterly 55(2017) no.6, S.413-414 (Christine DeZelar-Tiedman).
  7. Arp, R.; Smith, B.; Spear, A.D.: Building ontologies with basic formal ontology (2015) 0.00
    0.0038452265 = product of:
      0.026916584 = sum of:
        0.013458292 = weight(_text_:classification in 3444) [ClassicSimilarity], result of:
          0.013458292 = score(doc=3444,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.14074548 = fieldWeight in 3444, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03125 = fieldNorm(doc=3444)
        0.013458292 = weight(_text_:classification in 3444) [ClassicSimilarity], result of:
          0.013458292 = score(doc=3444,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.14074548 = fieldWeight in 3444, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03125 = fieldNorm(doc=3444)
      0.14285715 = coord(2/14)
    
    Content
    What Is an Ontology? - Kinds of Ontologies and the Role of Taxonomies - Principles of Best Practice 1: Domain Ontology Design - Principles of Best Practice II: Terms, Definitions, and Classification - Introduction to Basic Formal Ontology I: Continuants - Introduction to Basic Formal Ontology II: Occurrents - The Ontology of Relations - Basic Formal Ontology at Work - Appendix on Implementation: Languages, Editors, Reasoners, Browsers, Tools for Reuse - Glossary - Web Links Mentioned in the Text Including Ontologies, Research Groups, Software, and Reasoning Tools
  8. King, B.E.; Reinold, K.: Finding the concept, not just the word : a librarian's guide to ontologies and semantics (2008) 0.00
    0.00288392 = product of:
      0.02018744 = sum of:
        0.01009372 = weight(_text_:classification in 2863) [ClassicSimilarity], result of:
          0.01009372 = score(doc=2863,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.10555911 = fieldWeight in 2863, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2863)
        0.01009372 = weight(_text_:classification in 2863) [ClassicSimilarity], result of:
          0.01009372 = score(doc=2863,freq=2.0), product of:
            0.09562149 = queryWeight, product of:
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.03002521 = queryNorm
            0.10555911 = fieldWeight in 2863, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1847067 = idf(docFreq=4974, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2863)
      0.14285715 = coord(2/14)
    
    Abstract
    Aimed at students and professionals within Library and Information Services (LIS), this book is about the power and potential of ontologies to enhance the electronic search process. The book will compare search strategies and results in the current search environment and demonstrate how these could be transformed using ontologies and concept searching. Simple descriptions, visual representations, and examples of ontologies will bring a full understanding of how these concept maps are constructed to enhance retrieval through natural language queries. Readers will gain a sense of how ontologies are currently being used and how they could be applied in the future, encouraging them to think about how their own work and their users' search experiences could be enhanced by the creation of a customized ontology. Key Features Written by a librarian, for librarians (most work on ontologies is written and read by people in computer science and knowledge management) Written by a librarian who has created her own ontology and performed research on its capabilities Written in easily understandable language, with concepts broken down to the basics The Author Ms. King is the Information Specialist at the Center on Media and Child Health at Children's Hospital Boston. She is a graduate of Smith College (B.A.) and Simmons College (M.L.I.S.). She is an active member of the Special Libraries Association, and was the recipient of the 2005 SLA Innovation in Technology Award for the creation of a customized media effects ontology used for semantic searching. Readership The book is aimed at practicing librarians and information professionals as well as graduate students of Library and Information Science. Contents Introduction Part 1: Understanding Ontologies - organising knowledge; what is an ontology? How are ontologies different from other knowledge representations? How are ontologies currently being used? Key concepts Ontologies in semantic search - determining whether a search was successful; what does semantic search have to offer? Semantic techniques; semantic searching behind the scenes; key concepts Creating an ontology - how to create an ontology; key concepts Building an ontology from existing components - choosing components; customizing your knowledge structure; key concepts Part 2: Semantic Technologies Natural language processing - tagging parts of speech; grammar-based NLP; statistical NLP; semantic analysis,; current applications of NLP; key concepts Using metadata to add semantic information - structured languages; metadata tagging; semantic tagging; key concepts Other semantic capabilities - semantic classification; synsets; topic maps; rules and inference; key concepts Part 3: Case Studies: Theory into Practice Biogen Idec: using semantics in drug discovery research - Biogen Idec's solution; the future The Center on Media and Child Health: using an ontology to explore the effects of media - building the ontology; choosing the source; implementing and comparing to Boolean search; the future Partners HealthCare System: semantic technologies to improve clinical decision support - the medical appointment; partners healthcare system's solution; lessons learned; the future MINDSWAP: using ontologies to aid terrorism; intelligence gathering - building, using and maintaining the ontology; sharing information with other experts; future plans Part 4: Advanced Topics Languages for expressing ontologies - XML; RDF; OWL; SKOS; Ontology language features - comparison chart Tools for building ontologies - basic criteria when evaluating ontologies Part 5: Transitions to the Future
  9. Helbig, H.: Knowledge representation and the semantics of natural language (2014) 0.00
    0.001780432 = product of:
      0.024926046 = sum of:
        0.024926046 = product of:
          0.04985209 = sum of:
            0.04985209 = weight(_text_:texts in 2396) [ClassicSimilarity], result of:
              0.04985209 = score(doc=2396,freq=2.0), product of:
                0.16460659 = queryWeight, product of:
                  5.4822793 = idf(docFreq=499, maxDocs=44218)
                  0.03002521 = queryNorm
                0.302856 = fieldWeight in 2396, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4822793 = idf(docFreq=499, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2396)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Abstract
    Natural Language is not only the most important means of communication between human beings, it is also used over historical periods for the preservation of cultural achievements and their transmission from one generation to the other. During the last few decades, the flod of digitalized information has been growing tremendously. This tendency will continue with the globalisation of information societies and with the growing importance of national and international computer networks. This is one reason why the theoretical understanding and the automated treatment of communication processes based on natural language have such a decisive social and economic impact. In this context, the semantic representation of knowledge originally formulated in natural language plays a central part, because it connects all components of natural language processing systems, be they the automatic understanding of natural language (analysis), the rational reasoning over knowledge bases, or the generation of natural language expressions from formal representations. This book presents a method for the semantic representation of natural language expressions (texts, sentences, phrases, etc.) which can be used as a universal knowledge representation paradigm in the human sciences, like linguistics, cognitive psychology, or philosophy of language, as well as in computational linguistics and in artificial intelligence. It is also an attempt to close the gap between these disciplines, which to a large extent are still working separately.
  10. Semantic applications (2018) 0.00
    0.001780432 = product of:
      0.024926046 = sum of:
        0.024926046 = product of:
          0.04985209 = sum of:
            0.04985209 = weight(_text_:texts in 5204) [ClassicSimilarity], result of:
              0.04985209 = score(doc=5204,freq=2.0), product of:
                0.16460659 = queryWeight, product of:
                  5.4822793 = idf(docFreq=499, maxDocs=44218)
                  0.03002521 = queryNorm
                0.302856 = fieldWeight in 5204, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.4822793 = idf(docFreq=499, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5204)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Content
    Introduction.- Ontology Development.- Compliance using Metadata.- Variety Management for Big Data.- Text Mining in Economics.- Generation of Natural Language Texts.- Sentiment Analysis.- Building Concise Text Corpora from Web Contents.- Ontology-Based Modelling of Web Content.- Personalized Clinical Decision Support for Cancer Care.- Applications of Temporal Conceptual Semantic Systems.- Context-Aware Documentation in the Smart Factory.- Knowledge-Based Production Planning for Industry 4.0.- Information Exchange in Jurisdiction.- Supporting Automated License Clearing.- Managing cultural assets: Implementing typical cultural heritage archive's usage scenarios via Semantic Web technologies.- Semantic Applications for Process Management.- Domain-Specific Semantic Search Applications.
  11. Chaudhury, S.; Mallik, A.; Ghosh, H.: Multimedia ontology : representation and applications (2016) 0.00
    0.001696343 = product of:
      0.0237488 = sum of:
        0.0237488 = product of:
          0.0474976 = sum of:
            0.0474976 = weight(_text_:schemes in 2801) [ClassicSimilarity], result of:
              0.0474976 = score(doc=2801,freq=2.0), product of:
                0.16067243 = queryWeight, product of:
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.03002521 = queryNorm
                0.2956176 = fieldWeight in 2801, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.3512506 = idf(docFreq=569, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2801)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Abstract
    The book covers multimedia ontology in heritage preservation with intellectual explorations of various themes of Indian cultural heritage. The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled. The book contains information that helps with building semantic, content-based search and retrieval engines and also with developing vertical application-specific search applications. It guides you in designing multimedia tools that aid in logical and conceptual organization of large amounts of multimedia data. As a practical demonstration, it showcases multimedia applications in cultural heritage preservation efforts and the creation of virtual museums. The book describes the limitations of existing ontology techniques in semantic multimedia data processing, as well as some open problems in the representations and applications of multimedia ontology. As an antidote, it introduces new ontology representation and reasoning schemes that overcome these limitations. The long, compiled efforts reflected in Multimedia Ontology: Representation and Applications are a signpost for new achievements and developments in efficiency and accessibility in the field.
  12. Semantic digital libraries (2009) 0.00
    0.001436487 = product of:
      0.020110816 = sum of:
        0.020110816 = weight(_text_:bibliographic in 3371) [ClassicSimilarity], result of:
          0.020110816 = score(doc=3371,freq=2.0), product of:
            0.11688946 = queryWeight, product of:
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03002521 = queryNorm
            0.17204987 = fieldWeight in 3371, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.893044 = idf(docFreq=2449, maxDocs=44218)
              0.03125 = fieldNorm(doc=3371)
      0.071428575 = coord(1/14)
    
    Content
    Inhalt: Introduction to Digital Libraries and Semantic Web: Introduction / Bill McDaniel and Sebastian Ryszard Kruk - Digital Libraries and Knowledge Organization / Dagobert Soergel - Semantic Web and Ontologies / Marcin Synak, Maciej Dabrowski and Sebastian Ryszard Kruk - Social Semantic Information Spaces / John G. Breslin A Vision of Semantic Digital Libraries: Goals of Semantic Digital Libraries / Sebastian Ryszard Kruk and Bill McDaniel - Architecture of Semantic Digital Libraries / Sebastian Ryszard Kruk, Adam Westerki and Ewelina Kruk - Long-time Preservation / Markus Reis Ontologies for Semantic Digital Libraries: Bibliographic Ontology / Maciej Dabrowski, Macin Synak and Sebastian Ryszard Kruk - Community-aware Ontologies / Slawomir Grzonkowski, Sebastian Ryszard Kruk, Adam Gzella, Jakub Demczuk and Bill McDaniel Prototypes of Semantic Digital Libraries: JeromeDL: The Social Semantic Digital Library / Sebastian Ryszard Kruk, Mariusz Cygan, Adam Gzella, Tomasz Woroniecki and Maciej Dabrowski - The BRICKS Digital Library Infrastructure / Bernhard Haslhofer and Predrag Knezevié - Semantics in Greenstone / Annika Hinze, George Buchanan, David Bainbridge and Ian Witten Building the Future - Semantic Digital Libraries in Use: Hyperbooks / Gilles Falquet, Luka Nerima and Jean-Claude Ziswiler - Semantic Digital Libraries for Archiving / Bill McDaniel - Evaluation of Semantic and Social Technologies for Digital Libraries / Sebastian Ryszard Kruk, Ewelina Kruk and Katarzyna Stankiewicz - Conclusions: The Future of Semantic Digital Libraries / Sebastian Ryszard Kruk and Bill McDaniel
  13. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.00
    0.0012327906 = product of:
      0.017259069 = sum of:
        0.017259069 = product of:
          0.034518138 = sum of:
            0.034518138 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.034518138 = score(doc=3355,freq=4.0), product of:
                0.10514317 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03002521 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.071428575 = coord(1/14)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  14. Kavouras, M.; Kokla, M.: Theories of geographic concepts : ontological approaches to semantic integration (2008) 0.00
    0.0012124473 = product of:
      0.016974261 = sum of:
        0.016974261 = weight(_text_:subject in 3275) [ClassicSimilarity], result of:
          0.016974261 = score(doc=3275,freq=2.0), product of:
            0.10738805 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03002521 = queryNorm
            0.15806471 = fieldWeight in 3275, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03125 = fieldNorm(doc=3275)
      0.071428575 = coord(1/14)
    
    Abstract
    Written by experts in the field, this book addresses theoretical, formal, and pragmatic issues of geographic knowledge representation and integration based on an ontological approach. The first section sets the context by emphasizing the importance of philosophical, cognitive, and formal theories in preserving the semantics of geographic concepts during ontology development and integration. Section two exhausts all theoretical issues related to the subject and section three introduces a number of formal tools. Section four introduces a general method with the necessary steps to ontology integration and applies it to a number of ontology integration cases.

Subjects