Search (38 results, page 1 of 2)

  • × author_ss:"Stock, W.G."
  1. Stock, W.G.: Concepts and semantic relations in information science (2010) 0.03
    0.031507097 = product of:
      0.094521284 = sum of:
        0.041947264 = weight(_text_:applications in 4008) [ClassicSimilarity], result of:
          0.041947264 = score(doc=4008,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 4008, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4008)
        0.023667734 = weight(_text_:of in 4008) [ClassicSimilarity], result of:
          0.023667734 = score(doc=4008,freq=40.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.38633084 = fieldWeight in 4008, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4008)
        0.02890629 = weight(_text_:systems in 4008) [ClassicSimilarity], result of:
          0.02890629 = score(doc=4008,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 4008, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4008)
      0.33333334 = coord(3/9)
    
    Abstract
    Concept-based information retrieval and knowledge representation are in need of a theory of concepts and semantic relations. Guidelines for the construction and maintenance of knowledge organization systems (KOS) (such as ANSI/NISO Z39.19-2005 in the U.S.A. or DIN 2331:1980 in Germany) do not consider results of concept theory and theory of relations to the full extent. They are not able to unify the currently different worlds of traditional controlled vocabularies, of the social web (tagging and folksonomies) and of the semantic web (ontologies). Concept definitions as well as semantic relations are based on epistemological theories (empiricism, rationalism, hermeneutics, pragmatism, and critical theory). A concept is determined via its intension and extension as well as by definition. We will meet the problem of vagueness by introducing prototypes. Some important definitions are concept explanations (after Aristotle) and the definition of family resemblances (in the sense of Wittgenstein). We will model concepts as frames (according to Barsalou). The most important paradigmatic relation in KOS is hierarchy, which must be arranged into different classes: Hyponymy consists of taxonomy and simple hyponymy, meronymy consists of many different part-whole-relations. For practical application purposes, the transitivity of the given relation is very important. Unspecific associative relations are of little help to our focused applications and should be replaced by generalizable and domain-specific relations. We will discuss the reflexivity, symmetry, and transitivity of paradigmatic relations as well as the appearance of specific semantic relations in the different kinds of KOS (folksonomies, nomenclatures, classification systems, thesauri, and ontologies). Finally, we will pick out KOS as a central theme of the Semantic Web.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.10, S.1951-1969
  2. Garfield, E.; Paris, S.W.; Stock, W.G.: HistCite(TM) : a software tool for informetric analysis of citation linkage (2006) 0.02
    0.018279156 = product of:
      0.0822562 = sum of:
        0.014818345 = weight(_text_:of in 79) [ClassicSimilarity], result of:
          0.014818345 = score(doc=79,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24188137 = fieldWeight in 79, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=79)
        0.06743785 = weight(_text_:software in 79) [ClassicSimilarity], result of:
          0.06743785 = score(doc=79,freq=4.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.43390724 = fieldWeight in 79, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0546875 = fieldNorm(doc=79)
      0.22222222 = coord(2/9)
    
    Abstract
    HistCite(TM) is a software tool for analyzing and visualizing direct citation linkages between scientific papers. Its inputs are bibliographic records (with cited references) from "Web of Knowledge" or other sources. Its outputs are various tables and graphs with informetric indicators about the knowledge domain under study. As an example we analyze informetrically the literature about Alexius Meinong, an Austrian philosopher and psychologist. The article shortly discusses the informetric functionality of "Web of Knowledge" and shows broadly the possibilities that HistCite offers to its users (e.g. scientists, scientometricans and science journalists).
  3. Linde, F.; Stock, W.G.: Informationsmarkt : Informationen im I-Commerce anbieten und nachfragen (2011) 0.02
    0.016828805 = product of:
      0.07572962 = sum of:
        0.054498006 = weight(_text_:software in 291) [ClassicSimilarity], result of:
          0.054498006 = score(doc=291,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.35064998 = fieldWeight in 291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0625 = fieldNorm(doc=291)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 291) [ClassicSimilarity], result of:
              0.042463228 = score(doc=291,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 291, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=291)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Mit dem Aufkommen der Wissensgesellschaft wird Information zum Wirtschaftsgut. Digitale Wirtschaftsgüter - Content wie Software - werden entweder selbst vermarktet (z.B. bei kommerziellen Informationsdiensten) oder dienen als Lockangebote für Werbung (z.B. bei Suchmaschinen mit "sponsored links"). Aufgrund der Besonderheiten des vertriebenen Produkts unterscheiden sich die Wettbewerbsstrategien von Informationsanbietern von denen nicht-digitaler Güter. Zu beachten ist zudem der "illegale" Informationsmarkt (Schwarzkopien). Im Zentrum des Buches steht zwar eine ökonomische Analyse des Informationsmarktes, behandelt werden aber auch Informationssoziologie und -politologie, Informationsrecht sowie Informationsethik.
    Date
    23. 9.2010 11:15:22
  4. Peters, I.; Stock, W.G.: Power tags in information retrieval (2010) 0.01
    0.014654213 = product of:
      0.06594396 = sum of:
        0.015876798 = weight(_text_:of in 865) [ClassicSimilarity], result of:
          0.015876798 = score(doc=865,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25915858 = fieldWeight in 865, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=865)
        0.050067157 = weight(_text_:systems in 865) [ClassicSimilarity], result of:
          0.050067157 = score(doc=865,freq=12.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.41585106 = fieldWeight in 865, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=865)
      0.22222222 = coord(2/9)
    
    Abstract
    Purpose - Many Web 2.0 services (including Library 2.0 catalogs) make use of folksonomies. The purpose of this paper is to cut off all tags in the long tail of a document-specific tag distribution. The remaining tags at the beginning of a tag distribution are considered power tags and form a new, additional search option in information retrieval systems. Design/methodology/approach - In a theoretical approach the paper discusses document-specific tag distributions (power law and inverse-logistic shape), the development of such distributions (Yule-Simon process and shuffling theory) and introduces search tags (besides the well-known index tags) as a possibility for generating tag distributions. Findings - Search tags are compatible with broad and narrow folksonomies and with all knowledge organization systems (e.g. classification systems and thesauri), while index tags are only applicable in broad folksonomies. Based on these findings, the paper presents a sketch of an algorithm for mining and processing power tags in information retrieval systems. Research limitations/implications - This conceptual approach is in need of empirical evaluation in a concrete retrieval system. Practical implications - Power tags are a new search option for retrieval systems to limit the amount of hits. Originality/value - The paper introduces power tags as a means for enhancing the precision of search results in information retrieval systems that apply folksonomies, e.g. catalogs in Library 2.0environments.
  5. Stock, W.G.: On relevance distributions (2006) 0.01
    0.012589732 = product of:
      0.056653794 = sum of:
        0.023950063 = weight(_text_:of in 5116) [ClassicSimilarity], result of:
          0.023950063 = score(doc=5116,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.39093933 = fieldWeight in 5116, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=5116)
        0.03270373 = weight(_text_:systems in 5116) [ClassicSimilarity], result of:
          0.03270373 = score(doc=5116,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2716328 = fieldWeight in 5116, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=5116)
      0.22222222 = coord(2/9)
    
    Abstract
    There are at least three possible ways that documents are distributed by relevance: informetric (power law), inverse logistic, and dichotomous. The nature of the type of distribution has implications for the construction of relevance ranking algorithms for search engines, for automated (blind) relevance feedback, for user behavior when using Web search engines, for combining of outputs of search engines for metasearch, for topic detection and tracking, and for the methodology of evaluation of information retrieval systems.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.8, S.1126-1129
  6. Linde, F.; Stock, W.G.: Information markets : a strategic guideline for the i-commerce (2011) 0.01
    0.012539895 = product of:
      0.056429528 = sum of:
        0.015556021 = weight(_text_:of in 3283) [ClassicSimilarity], result of:
          0.015556021 = score(doc=3283,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25392252 = fieldWeight in 3283, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3283)
        0.040873505 = weight(_text_:software in 3283) [ClassicSimilarity], result of:
          0.040873505 = score(doc=3283,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.2629875 = fieldWeight in 3283, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=3283)
      0.22222222 = coord(2/9)
    
    Abstract
    Information Markets is a compendium of the i-commerce, the commerce with digital information, content as well as software. Information Markets is a comprehensive overview of the state of the art of economic and information science endeavors on the markets of digital information. It provides a strategic guideline for information providers how to analyse their market environment and how to develop possible strategic actions. It is a book for information professionals, both for students of LIS (Library and Information Science), CIS (Computer and Information Science) or Information Management curricula and for practitioners as well as managers in these fields.
  7. Stock, W.G.; Weber, S.: Facets of informetrics : Preface (2006) 0.01
    0.010706802 = product of:
      0.04818061 = sum of:
        0.019858345 = weight(_text_:of in 76) [ClassicSimilarity], result of:
          0.019858345 = score(doc=76,freq=44.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.3241498 = fieldWeight in 76, product of:
              6.6332498 = tf(freq=44.0), with freq of:
                44.0 = termFreq=44.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=76)
        0.028322265 = weight(_text_:systems in 76) [ClassicSimilarity], result of:
          0.028322265 = score(doc=76,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2352409 = fieldWeight in 76, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=76)
      0.22222222 = coord(2/9)
    
    Abstract
    According to Jean M. Tague-Sutcliffe "informetrics" is "the study of the quantitative aspects of information in any form, not just records or bibliographies, and in any social group, not just scientists" (Tague-Sutcliffe, 1992, 1). Leo Egghe also defines "informetrics" in a very broad sense. "(W)e will use the term' informetrics' as the broad term comprising all-metrics studies related to information science, including bibliometrics (bibliographies, libraries,...), scientometrics (science policy, citation analysis, research evaluation,...), webometrics (metrics of the web, the Internet or other social networks such as citation or collaboration networks), ..." (Egghe, 2005b,1311). According to Concepcion S. Wilson "informetrics" is "the quantitative study of collections of moderatesized units of potentially informative text, directed to the scientific understanding of information processes at the social level" (Wilson, 1999, 211). We should add to Wilson's units of text also digital collections of images, videos, spoken documents and music. Dietmar Wolfram divides "informetrics" into two aspects, "system-based characteristics that arise from the documentary content of IR systems and how they are indexed, and usage-based characteristics that arise how users interact with system content and the system interfaces that provide access to the content" (Wolfram, 2003, 6). We would like to follow Tague-Sutcliffe, Egghe, Wilson and Wolfram (and others, for example Björneborn & Ingwersen, 2004) and call this broad research of empirical information science "informetrics". Informetrics includes therefore all quantitative studies in information science. If a scientist performs scientific investigations empirically, e.g. on information users' behavior, on scientific impact of academic journals, on the development of the patent application activity of a company, on links of Web pages, on the temporal distribution of blog postings discussing a given topic, on availability, recall and precision of retrieval systems, on usability of Web sites, and so on, he or she contributes to informetrics. We see three subject areas in information science in which such quantitative research takes place, - information users and information usage, - evaluation of information systems, - information itself, Following Wolfram's article, we divide his system-based characteristics into the "information itself "-category and the "information system"-category. Figure 1 is a simplistic graph of subjects and research areas of informetrics as an empirical information science.
  8. Stock, W.G.: Information Retrieval : Informationen suchen und finden (2007) 0.01
    0.010276824 = product of:
      0.04624571 = sum of:
        0.017343773 = weight(_text_:systems in 1851) [ClassicSimilarity], result of:
          0.017343773 = score(doc=1851,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.14405504 = fieldWeight in 1851, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1851)
        0.028901935 = weight(_text_:software in 1851) [ClassicSimilarity], result of:
          0.028901935 = score(doc=1851,freq=4.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.18596025 = fieldWeight in 1851, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1851)
      0.22222222 = coord(2/9)
    
    Classification
    ST 270 Informatik / Monographien / Software und -entwicklung / Datenbanken, Datenbanksysteme, Data base management, Informationssysteme
    LCSH
    Information storage and retrieval systems
    RVK
    ST 270 Informatik / Monographien / Software und -entwicklung / Datenbanken, Datenbanksysteme, Data base management, Informationssysteme
    Subject
    Information storage and retrieval systems
  9. Stock, W.G.; Stock, M.: Handbook of information science : a comprehensive handbook (2013) 0.01
    0.010142646 = product of:
      0.045641907 = sum of:
        0.016735615 = weight(_text_:of in 2784) [ClassicSimilarity], result of:
          0.016735615 = score(doc=2784,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27317715 = fieldWeight in 2784, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2784)
        0.02890629 = weight(_text_:systems in 2784) [ClassicSimilarity], result of:
          0.02890629 = score(doc=2784,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 2784, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2784)
      0.22222222 = coord(2/9)
    
    Abstract
    Dealing with information is one of the vital skills in the 21st century. It takes a fair degree of information savvy to create, represent and supply information as well as to search for and retrieve relevant knowledge. How does information (documents, pieces of knowledge) have to be organized in order to be retrievable? What role does metadata play? What are search engines on the Web, or in corporate intranets, and how do they work? How must one deal with natural language processing and tools of knowledge organization, such as thesauri, classification systems, and ontologies? How useful is social tagging? How valuable are intellectually created abstracts and automatically prepared extracts? Which empirical methods allow for user research and which for the evaluation of information systems? This Handbook is a basic work of information science, providing a comprehensive overview of the current state of information retrieval and knowledge representation. It addresses readers from all professions and scientific disciplines, but particularly scholars, practitioners and students of Information Science, Library Science, Computer Science, Information Management, and Knowledge Management. This Handbook is a suitable reference work for Public and Academic Libraries.
  10. Garfield, E.; Stock, W.G.: Citation Consciousness : Interview with Eugene Garfiels, chairman emeritus of ISI; Philadelphia (2002) 0.01
    0.00997166 = product of:
      0.044872466 = sum of:
        0.018332949 = weight(_text_:of in 613) [ClassicSimilarity], result of:
          0.018332949 = score(doc=613,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2992506 = fieldWeight in 613, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=613)
        0.026539518 = product of:
          0.053079035 = sum of:
            0.053079035 = weight(_text_:22 in 613) [ClassicSimilarity], result of:
              0.053079035 = score(doc=613,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.38690117 = fieldWeight in 613, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=613)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Content
    Abschnitte zu: The origins of citation indexing in science - Citation analysis in sociology, history and philosophy of science - From ASIS to ASIST
    Source
    Password. 2002, H.6, S.22-25
  11. Schmidt, S.; Stock, W.G.: Collective indexing of emotions in images : a study in emotional information retrieval (2009) 0.01
    0.009951797 = product of:
      0.044783086 = sum of:
        0.015876798 = weight(_text_:of in 2792) [ClassicSimilarity], result of:
          0.015876798 = score(doc=2792,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25915858 = fieldWeight in 2792, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2792)
        0.02890629 = weight(_text_:systems in 2792) [ClassicSimilarity], result of:
          0.02890629 = score(doc=2792,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 2792, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2792)
      0.22222222 = coord(2/9)
    
    Abstract
    Some documents provoke emotions in people viewing them. Will it be possible to describe emotions consistently and use this information in retrieval systems? We tested collective (statistically aggregated) emotion indexing using images as examples. Considering psychological results, basic emotions are anger, disgust, fear, happiness, and sadness. This study follows an approach developed by Lee and Neal (2007) for music emotion retrieval and applies scroll bars for tagging basic emotions and their intensities. A sample comprising 763 persons tagged emotions caused by images (retrieved from www.Flickr.com) applying scroll bars and (linguistic) tags. Using SPSS, we performed descriptive statistics and correlation analysis. For more than half of the images, the test persons have clear emotion favorites. There are prototypical images for given emotions. The document-specific consistency of tagging using a scroll bar is, for some images, very high. Most of the (most commonly used) linguistic tags are on the basic level (in the sense of Rosch's basic level theory). The distributions of the linguistic tags in our examples follow an inverse power-law. Hence, it seems possible to apply collective image emotion tagging to image information systems and to present a new search option for basic emotions. This article is one of the first steps in the research area of emotional information retrieval (EmIR).
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.5, S.863-876
  12. Stock, W.G.: Informational cities : analysis and construction of cities in the knowledge society (2011) 0.01
    0.008338215 = product of:
      0.037521966 = sum of:
        0.024252208 = weight(_text_:of in 4452) [ClassicSimilarity], result of:
          0.024252208 = score(doc=4452,freq=42.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.39587128 = fieldWeight in 4452, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4452)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 4452) [ClassicSimilarity], result of:
              0.026539518 = score(doc=4452,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 4452, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4452)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Informational cities are prototypical cities of the knowledge society. If they are informational world cities, they are new centers of power. According to Manuel Castells (1989), in those cities space of flows (flows of money, power, and information) tend to override space of places. Information and communication technology infrastructures, cognitive infrastructures (as groundwork of knowledge cities and creative cities), and city-level knowledge management are of great importance. Digital libraries provide access to the global explicit knowledge. The informational city consists of creative clusters and spaces for personal contacts to stimulate sharing of implicit information. In such cities, we can observe job polarization in favor of well-trained employees. The corporate structure of informational cities is made up of financial services, knowledge-intensive high-tech industrial enterprises, companies of the information economy, and further creative and knowledge-intensive service enterprises. Weak location factors are facilities for culture, recreational activities, and consumption. Political willingness to create an informational city and e-governance activities are crucial aspects for the development of such cities. This conceptual article frames indicators which are able to mark the degree of "informativeness" of a city. Finally, based upon findings of network economy, we try to explain why certain cities master the transition to informational cities and others (lagging to relative insignificance) do not. The article connects findings of information science and of urbanistics and urban planning.
    Date
    3. 7.2011 19:22:49
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.5, S.963-986
  13. Stock, W.G.: Management interner und externer Informationsressourcen in einem einheitlichen Groupware-System : Information Center von AGI - Information Management Consultants (1999) 0.01
    0.005298417 = product of:
      0.047685754 = sum of:
        0.047685754 = weight(_text_:software in 3396) [ClassicSimilarity], result of:
          0.047685754 = score(doc=3396,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.30681872 = fieldWeight in 3396, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3396)
      0.11111111 = coord(1/9)
    
    Abstract
    Seit 1983 gibt es die Arbeitsgemeinschaft Informationsvermittlung (AGI). Die AGI-Information Management Consultants, vorneweg Manfred Hauer, sind inzwischen ausgewiesene Spezialisten bei der Anwendung von Information Retrieval-Systemen. Seit 1994 bietet M. Hauer ein umfassendes Produkt an, das INFORMATION CENTER, das u.a. Elemente der Bibliotheksverwaltung, der Pressedokumentation, der Recherche, der Adreßverwaltung und des Publizierens miteinander verbindet. Durch den aktuellen Umstieg der Basis-Software, Lotus, auf die neue IBM-Suchmaschine GTR hat eine Betrachtung von INFORMATION CENTER besondere Relevanz, erreichen wir doch nunmehr einen Bereich, der von Informatikern und Beratern mit 'Knowledge Management' umschrieben wird. Damit wäre INFORMATION CENTER das erste deutsche Knowledge Management-Produkt auf einer umfassenden informationswissenschaftlichen Basis. Wird es einem solchen Anspruch gerecht?
  14. Stock, W.G.: Wissenschaftsinformatik : Fundierung, Gegenstand und Methoden (1980) 0.00
    0.0047181365 = product of:
      0.042463228 = sum of:
        0.042463228 = product of:
          0.084926456 = sum of:
            0.084926456 = weight(_text_:22 in 2808) [ClassicSimilarity], result of:
              0.084926456 = score(doc=2808,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.61904186 = fieldWeight in 2808, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=2808)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    Ratio. 22(1980), S.155-164
  15. Stock, W.G.: Informationsmangel trotz Überfluß : Informationsgesellschaft verlangt neue Berufe und Berufsbilder (1995) 0.00
    0.0047181365 = product of:
      0.042463228 = sum of:
        0.042463228 = product of:
          0.084926456 = sum of:
            0.084926456 = weight(_text_:22 in 2027) [ClassicSimilarity], result of:
              0.084926456 = score(doc=2027,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.61904186 = fieldWeight in 2027, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=2027)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    Insider. 1995, Nr.4, Juli, S.19-22
  16. Stock, M.; Stock, W.G.: Recherchieren im Internet (2004) 0.00
    0.0047181365 = product of:
      0.042463228 = sum of:
        0.042463228 = product of:
          0.084926456 = sum of:
            0.084926456 = weight(_text_:22 in 4686) [ClassicSimilarity], result of:
              0.084926456 = score(doc=4686,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.61904186 = fieldWeight in 4686, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=4686)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    27.11.2005 18:04:22
  17. Stock, W.G.: Endnutzersystem für internationale Geschäftsinformationen (1998) 0.00
    0.004128369 = product of:
      0.037155323 = sum of:
        0.037155323 = product of:
          0.074310645 = sum of:
            0.074310645 = weight(_text_:22 in 2407) [ClassicSimilarity], result of:
              0.074310645 = score(doc=2407,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.5416616 = fieldWeight in 2407, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=2407)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    Password. 1998, H.10, S.22-28
  18. Stock, W.G.: ¬Die Bedeutung der Theorie der Vorstellungsproduktion der Grazer Schule für die kognitive Wissenschaft (1989) 0.00
    0.002730383 = product of:
      0.024573447 = sum of:
        0.024573447 = weight(_text_:of in 1806) [ClassicSimilarity], result of:
          0.024573447 = score(doc=1806,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.40111488 = fieldWeight in 1806, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1806)
      0.11111111 = coord(1/9)
    
    Abstract
    The author stresses the need for a general, overall theory of cognitive psychological processes for cognitive science. The relevance of the Graz-school theorie on the 'production of ideas' is then examined as an attempt to provide such a framework. In Graz-school, at the beginning of 20th century, representation ('Vorstellung') was the foundational aspect of all the cognitive processes. As an example of an analysis of the origin of representation Stephan Witasek's theory of sensation is surveyed. The explanation of the origin of representations is also theoretically and practically important for cognitive science
  19. Knautz, K.; Stock, W.G.: Collective indexing of emotions in videos (2011) 0.00
    0.002277429 = product of:
      0.02049686 = sum of:
        0.02049686 = weight(_text_:of in 295) [ClassicSimilarity], result of:
          0.02049686 = score(doc=295,freq=30.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.33457235 = fieldWeight in 295, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=295)
      0.11111111 = coord(1/9)
    
    Abstract
    Purpose - The object of this empirical research study is emotion, as depicted and aroused in videos. This paper seeks to answer the questions: Are users able to index such emotions consistently? Are the users' votes usable for emotional video retrieval? Design/methodology/approach - The authors worked with a controlled vocabulary for nine basic emotions (love, happiness, fun, surprise, desire, sadness, anger, disgust and fear), a slide control for adjusting the emotions' intensity, and the approach of broad folksonomies. Different users tagged the same videos. The test persons had the task of indexing the emotions of 20 videos (reprocessed clips from YouTube). The authors distinguished between emotions which were depicted in the video and those that were evoked in the user. Data were received from 776 participants and a total of 279,360 slide control values were analyzed. Findings - The consistency of the users' votes is very high; the tag distributions for the particular videos' emotions are stable. The final shape of the distributions will be reached by the tagging activities of only very few users (less than 100). By applying the approach of power tags it is possible to separate the pivotal emotions of every document - if indeed there is any feeling at all. Originality/value - This paper is one of the first steps in the new research area of emotional information retrieval (EmIR). To the authors' knowledge, it is the first research project into the collective indexing of emotions in videos.
    Source
    Journal of documentation. 67(2011) no.6, S.975-994
  20. Stock, W.G.: Forschung im internationalen Vergleich - Wissenschaftsindikatoren auf Zitationsbasis : ISI Essential Science Indicators (2002) 0.00
    0.0022710927 = product of:
      0.020439833 = sum of:
        0.020439833 = weight(_text_:systems in 474) [ClassicSimilarity], result of:
          0.020439833 = score(doc=474,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 474, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=474)
      0.11111111 = coord(1/9)
    
    Abstract
    Bewertung wissenschaftlicher Forschungsergebnisse aus einer elektronischen Datenbank heraus? Rangordnungen der wichtigsten Institutionen, Wissenschaftler, Zeitschriften und sogar Länder in Fachdisziplinen nach Einfluss? Markierung "heißer", hochaktueller Artikel? Auflisten der hochzitierten Forschungsfronten in den einzelnen Wissenschaftsdisziplinen? Und das alles auf Knopfdruck und nicht mittels umständlicher szientometrischer Verfahren? Geht so etwas überhaupt? Es geht. Mit den "Essential Science Indicators" (ESI) legt das ISl ein webbasiertes Informationssystem zur Wissenschaftsevaluation vor, das einzigartige Ergebnisse präsentiert und in der Tat ausgesprochen einfach zu bedienen ist. Aber es geht, verglichen mit ausgeklügelten Methoden der empirischen Wissenschaftsforschung, nicht alles. Wo liegen die Grenzen des Systems? Wir werden die Arbeitsweise der ESI, seine Datenbasis, die eingesetzten informetrischen Algorithmen - und deren methodischen Probleme, die Suchoberfläche sowie die Ergebnisdarstellung skizzieren. Als Beispiel dienen uns Aspekte deutscher Forschung. Etwa: In welcher Disziplin haben Deutschlands Forscher den größten internationalen Einfluss? Welches deutsche Institut der Neurowissenschaften kann aufglobaler Ebene mitmischen? Oder: Welcher in Deutschland tätige Wissenschaftler führt eine disziplinspezifische Rangordnung an?Letztlich: Wer braucht die "Essential Science Indicators"? - Wir testeten die Essential Science Indicators Mitte Februar 2002 anhand der Version vom 1. Januar 2002, die das Zehn-Jahres-Intervall 1991 bis 2000 sowie die ersten zehn Monate aus 2001 berücksichtigt.

Years

Languages

  • d 23
  • e 15

Types

  • a 31
  • m 7
  • r 1
  • More… Less…