Search (101 results, page 1 of 6)

  • × theme_ss:"Automatisches Abstracting"
  1. Summarising software for publishing (1996) 0.06
    0.06390515 = product of:
      0.19171545 = sum of:
        0.014666359 = weight(_text_:of in 5121) [ClassicSimilarity], result of:
          0.014666359 = score(doc=5121,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23940048 = fieldWeight in 5121, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=5121)
        0.09439332 = weight(_text_:software in 5121) [ClassicSimilarity], result of:
          0.09439332 = score(doc=5121,freq=6.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.6073436 = fieldWeight in 5121, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0625 = fieldNorm(doc=5121)
        0.082655765 = product of:
          0.16531153 = sum of:
            0.16531153 = weight(_text_:packages in 5121) [ClassicSimilarity], result of:
              0.16531153 = score(doc=5121,freq=2.0), product of:
                0.2706874 = queryWeight, product of:
                  6.9093957 = idf(docFreq=119, maxDocs=44218)
                  0.03917671 = queryNorm
                0.6107101 = fieldWeight in 5121, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.9093957 = idf(docFreq=119, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5121)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Reviews 4 software packages designed to provide accurate and indicative summaries of documents by taking the documents and creating distinctive abstracts from them. The products reviewed are: Oracle's ConText; InText's Object Analyzer; Iconovex's AnchorPage; and Software Scientific's Interrogator. Techniques used by the products include: the use of dictionaries of known words and phrases to interpret documents; and heuristic analysis involving weighting all the words in the document solely on their occurrence and position within the document
  2. McKeown, K.; Robin, J.; Kukich, K.: Generating concise natural language summaries (1995) 0.05
    0.045119576 = product of:
      0.13535872 = sum of:
        0.08389453 = weight(_text_:applications in 2932) [ClassicSimilarity], result of:
          0.08389453 = score(doc=2932,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.4864132 = fieldWeight in 2932, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.078125 = fieldNorm(doc=2932)
        0.010584532 = weight(_text_:of in 2932) [ClassicSimilarity], result of:
          0.010584532 = score(doc=2932,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17277241 = fieldWeight in 2932, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=2932)
        0.040879667 = weight(_text_:systems in 2932) [ClassicSimilarity], result of:
          0.040879667 = score(doc=2932,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.339541 = fieldWeight in 2932, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.078125 = fieldNorm(doc=2932)
      0.33333334 = coord(3/9)
    
    Abstract
    Description of the problems for summary generation, the applications developed (for basket ball games - STREAK and for telephone network planning activity - PLANDOC), the linguistic constructions that the systems use to convey information concisely and the textual constraints that determine what information gets included
  3. Wu, Y.-f.B.; Li, Q.; Bot, R.S.; Chen, X.: Finding nuggets in documents : a machine learning approach (2006) 0.04
    0.03984839 = product of:
      0.08965888 = sum of:
        0.041947264 = weight(_text_:applications in 5290) [ClassicSimilarity], result of:
          0.041947264 = score(doc=5290,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 5290, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5290)
        0.0140020205 = weight(_text_:of in 5290) [ClassicSimilarity], result of:
          0.0140020205 = score(doc=5290,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.22855641 = fieldWeight in 5290, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5290)
        0.020439833 = weight(_text_:systems in 5290) [ClassicSimilarity], result of:
          0.020439833 = score(doc=5290,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 5290, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5290)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 5290) [ClassicSimilarity], result of:
              0.026539518 = score(doc=5290,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 5290, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5290)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    Document keyphrases provide a concise summary of a document's content, offering semantic metadata summarizing a document. They can be used in many applications related to knowledge management and text mining, such as automatic text summarization, development of search engines, document clustering, document classification, thesaurus construction, and browsing interfaces. Because only a small portion of documents have keyphrases assigned by authors, and it is time-consuming and costly to manually assign keyphrases to documents, it is necessary to develop an algorithm to automatically generate keyphrases for documents. This paper describes a Keyphrase Identification Program (KIP), which extracts document keyphrases by using prior positive samples of human identified phrases to assign weights to the candidate keyphrases. The logic of our algorithm is: The more keywords a candidate keyphrase contains and the more significant these keywords are, the more likely this candidate phrase is a keyphrase. KIP's learning function can enrich the glossary database by automatically adding new identified keyphrases to the database. KIP's personalization feature will let the user build a glossary database specifically suitable for the area of his/her interest. The evaluation results show that KIP's performance is better than the systems we compared to and that the learning function is effective.
    Date
    22. 7.2006 17:25:48
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.6, S.740-752
  4. Sparck Jones, K.: Automatic summarising : the state of the art (2007) 0.03
    0.034606628 = product of:
      0.10381988 = sum of:
        0.050336715 = weight(_text_:applications in 932) [ClassicSimilarity], result of:
          0.050336715 = score(doc=932,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 932, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=932)
        0.010999769 = weight(_text_:of in 932) [ClassicSimilarity], result of:
          0.010999769 = score(doc=932,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17955035 = fieldWeight in 932, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=932)
        0.042483397 = weight(_text_:systems in 932) [ClassicSimilarity], result of:
          0.042483397 = score(doc=932,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.35286134 = fieldWeight in 932, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=932)
      0.33333334 = coord(3/9)
    
    Abstract
    This paper reviews research on automatic summarising in the last decade. This work has grown, stimulated by technology and by evaluation programmes. The paper uses several frameworks to organise the review, for summarising itself, for the factors affecting summarising, for systems, and for evaluation. The review examines the evaluation strategies applied to summarising, the issues they raise, and the major programmes. It considers the input, purpose and output factors investigated in recent summarising research, and discusses the classes of strategy, extractive and non-extractive, that have been explored, illustrating the range of systems built. The conclusions drawn are that automatic summarisation has made valuable progress, with useful applications, better evaluation, and more task understanding. But summarising systems are still poorly motivated in relation to the factors affecting them, and evaluation needs taking much further to engage with the purposes summaries are intended to serve and the contexts in which they are used.
  5. Haag, M.: Automatic text summarization : Evaluation des Copernic Summarizer und mögliche Einsatzfelder in der Fachinformation der DaimlerCrysler AG (2002) 0.03
    0.032177437 = product of:
      0.09653231 = sum of:
        0.014200641 = weight(_text_:of in 649) [ClassicSimilarity], result of:
          0.014200641 = score(doc=649,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 649, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=649)
        0.0245278 = weight(_text_:systems in 649) [ClassicSimilarity], result of:
          0.0245278 = score(doc=649,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 649, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=649)
        0.05780387 = weight(_text_:software in 649) [ClassicSimilarity], result of:
          0.05780387 = score(doc=649,freq=4.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.3719205 = fieldWeight in 649, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=649)
      0.33333334 = coord(3/9)
    
    Abstract
    An evaluation of the Copernic Summarizer, a software for automatically summarizing text in various data formats, is being presented. It shall be assessed if and how the Copernic Summarizer can reasonably be used in the DaimlerChrysler Information Division in order to enhance the quality of its information services. First, an introduction into Automatic Text Summarization is given and the Copernic Summarizer is being presented. Various methods for evaluating Automatic Text Summarization systems and software ergonomics are presented. Two evaluation forms are developed with which the employees of the Information Division shall evaluate the quality and relevance of the extracted keywords and summaries as well as the software's usability. The quality and relevance assessment is done by comparing the original text to the summaries. Finally, a recommendation is given concerning the use of the Copernic Summarizer.
  6. Jones, S.; Paynter, G.W.: Automatic extractionof document keyphrases for use in digital libraries : evaluations and applications (2002) 0.03
    0.029196393 = product of:
      0.087589175 = sum of:
        0.041947264 = weight(_text_:applications in 601) [ClassicSimilarity], result of:
          0.041947264 = score(doc=601,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 601, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=601)
        0.016735615 = weight(_text_:of in 601) [ClassicSimilarity], result of:
          0.016735615 = score(doc=601,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27317715 = fieldWeight in 601, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=601)
        0.02890629 = weight(_text_:systems in 601) [ClassicSimilarity], result of:
          0.02890629 = score(doc=601,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 601, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=601)
      0.33333334 = coord(3/9)
    
    Abstract
    This article describes an evaluation of the Kea automatic keyphrase extraction algorithm. Document keyphrases are conventionally used as concise descriptors of document content, and are increasingly used in novel ways, including document clustering, searching and browsing interfaces, and retrieval engines. However, it is costly and time consuming to manually assign keyphrases to documents, motivating the development of tools that automatically perform this function. Previous studies have evaluated Kea's performance by measuring its ability to identify author keywords and keyphrases, but this methodology has a number of well-known limitations. The results presented in this article are based on evaluations by human assessors of the quality and appropriateness of Kea keyphrases. The results indicate that, in general, Kea produces keyphrases that are rated positively by human assessors. However, typical Kea settings can degrade performance, particularly those relating to keyphrase length and domain specificity. We found that for some settings, Kea's performance is better than that of similar systems, and that Kea's ranking of extracted keyphrases is effective. We also determined that author-specified keyphrases appear to exhibit an inherent ranking, and that they are rated highly and therefore suitable for use in training and evaluation of automatic keyphrasing systems.
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.8, S.653-677
  7. Jones, P.A.; Bradbeer, P.V.G.: Discovery of optimal weights in a concept selection system (1996) 0.03
    0.02880529 = product of:
      0.086415865 = sum of:
        0.018934188 = weight(_text_:of in 6974) [ClassicSimilarity], result of:
          0.018934188 = score(doc=6974,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.3090647 = fieldWeight in 6974, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=6974)
        0.046250064 = weight(_text_:systems in 6974) [ClassicSimilarity], result of:
          0.046250064 = score(doc=6974,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.38414678 = fieldWeight in 6974, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=6974)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 6974) [ClassicSimilarity], result of:
              0.042463228 = score(doc=6974,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 6974, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6974)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Describes the application of weighting strategies to model uncertainties and probabilities in automatic abstracting systems, particularly in the concept selection phase. The weights were originally assigned in an ad hoc manner and were then refined by manual analysis of the results. The new method attempts to derive a more systematic methods and performs this using a genetic algorithm
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon
  8. Robin, J.; McKeown, K.: Empirically designing and evaluating a new revision-based model for summary generation (1996) 0.02
    0.024892237 = product of:
      0.07467671 = sum of:
        0.020741362 = weight(_text_:of in 6751) [ClassicSimilarity], result of:
          0.020741362 = score(doc=6751,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.33856338 = fieldWeight in 6751, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=6751)
        0.03270373 = weight(_text_:systems in 6751) [ClassicSimilarity], result of:
          0.03270373 = score(doc=6751,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2716328 = fieldWeight in 6751, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=6751)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 6751) [ClassicSimilarity], result of:
              0.042463228 = score(doc=6751,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 6751, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6751)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Presents a system for summarizing quantitative data in natural language, focusing on the use of a corpus of basketball game summaries, drawn from online news services, to empirically shape the system design and to evaluate the approach. Initial corpus analysis revealed characteristics of textual summaries that challenge the capabilities of current language generation systems. A revision based corpus analysis was used to identify and encode the revision rules of the system. Presents a quantitative evaluation, using several test corpora, to measure the robustness of the new revision based model
    Date
    6. 3.1997 16:22:15
  9. Dunlavy, D.M.; O'Leary, D.P.; Conroy, J.M.; Schlesinger, J.D.: QCS: A system for querying, clustering and summarizing documents (2007) 0.02
    0.023804247 = product of:
      0.07141274 = sum of:
        0.015841477 = weight(_text_:of in 947) [ClassicSimilarity], result of:
          0.015841477 = score(doc=947,freq=28.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25858206 = fieldWeight in 947, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=947)
        0.028322265 = weight(_text_:systems in 947) [ClassicSimilarity], result of:
          0.028322265 = score(doc=947,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2352409 = fieldWeight in 947, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=947)
        0.027249003 = weight(_text_:software in 947) [ClassicSimilarity], result of:
          0.027249003 = score(doc=947,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.17532499 = fieldWeight in 947, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03125 = fieldNorm(doc=947)
      0.33333334 = coord(3/9)
    
    Abstract
    Information retrieval systems consist of many complicated components. Research and development of such systems is often hampered by the difficulty in evaluating how each particular component would behave across multiple systems. We present a novel integrated information retrieval system-the Query, Cluster, Summarize (QCS) system-which is portable, modular, and permits experimentation with different instantiations of each of the constituent text analysis components. Most importantly, the combination of the three types of methods in the QCS design improves retrievals by providing users more focused information organized by topic. We demonstrate the improved performance by a series of experiments using standard test sets from the Document Understanding Conferences (DUC) as measured by the best known automatic metric for summarization system evaluation, ROUGE. Although the DUC data and evaluations were originally designed to test multidocument summarization, we developed a framework to extend it to the task of evaluation for each of the three components: query, clustering, and summarization. Under this framework, we then demonstrate that the QCS system (end-to-end) achieves performance as good as or better than the best summarization engines. Given a query, QCS retrieves relevant documents, separates the retrieved documents into topic clusters, and creates a single summary for each cluster. In the current implementation, Latent Semantic Indexing is used for retrieval, generalized spherical k-means is used for the document clustering, and a method coupling sentence "trimming" and a hidden Markov model, followed by a pivoted QR decomposition, is used to create a single extract summary for each cluster. The user interface is designed to provide access to detailed information in a compact and useful format. Our system demonstrates the feasibility of assembling an effective IR system from existing software libraries, the usefulness of the modularity of the design, and the value of this particular combination of modules.
  10. Moens, M.F.: Automatic indexing and abstracting of document texts (2000) 0.02
    0.023347465 = product of:
      0.105063595 = sum of:
        0.08389453 = weight(_text_:applications in 6892) [ClassicSimilarity], result of:
          0.08389453 = score(doc=6892,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.4864132 = fieldWeight in 6892, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.078125 = fieldNorm(doc=6892)
        0.021169065 = weight(_text_:of in 6892) [ClassicSimilarity], result of:
          0.021169065 = score(doc=6892,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34554482 = fieldWeight in 6892, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=6892)
      0.22222222 = coord(2/9)
    
    Content
    Need for indexing and abstracting texts; attributes of texts; text representations and their use; selection of natural language index terms; assignment of controlled language index texts; automatic abstracting; applications
  11. Vanderwende, L.; Suzuki, H.; Brockett, J.M.; Nenkova, A.: Beyond SumBasic : task-focused summarization with sentence simplification and lexical expansion (2007) 0.02
    0.023221139 = product of:
      0.06966341 = sum of:
        0.019052157 = weight(_text_:of in 948) [ClassicSimilarity], result of:
          0.019052157 = score(doc=948,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.3109903 = fieldWeight in 948, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=948)
        0.034687545 = weight(_text_:systems in 948) [ClassicSimilarity], result of:
          0.034687545 = score(doc=948,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 948, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=948)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 948) [ClassicSimilarity], result of:
              0.031847417 = score(doc=948,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 948, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=948)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    In recent years, there has been increased interest in topic-focused multi-document summarization. In this task, automatic summaries are produced in response to a specific information request, or topic, stated by the user. The system we have designed to accomplish this task comprises four main components: a generic extractive summarization system, a topic-focusing component, sentence simplification, and lexical expansion of topic words. This paper details each of these components, together with experiments designed to quantify their individual contributions. We include an analysis of our results on two large datasets commonly used to evaluate task-focused summarization, the DUC2005 and DUC2006 datasets, using automatic metrics. Additionally, we include an analysis of our results on the DUC2006 task according to human evaluation metrics. In the human evaluation of system summaries compared to human summaries, i.e., the Pyramid method, our system ranked first out of 22 systems in terms of overall mean Pyramid score; and in the human evaluation of summary responsiveness to the topic, our system ranked third out of 35 systems.
  12. Craven, T.C.: ¬An experiment in the use of tools for computer-assisted abstracting (1996) 0.02
    0.016579175 = product of:
      0.07460629 = sum of:
        0.016802425 = weight(_text_:of in 7426) [ClassicSimilarity], result of:
          0.016802425 = score(doc=7426,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2742677 = fieldWeight in 7426, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=7426)
        0.05780387 = weight(_text_:software in 7426) [ClassicSimilarity], result of:
          0.05780387 = score(doc=7426,freq=4.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.3719205 = fieldWeight in 7426, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=7426)
      0.22222222 = coord(2/9)
    
    Abstract
    Experimental subjects wrote abstracts of an article using a simplified version of the TEXNET abstracting assistance software. In addition to the fulltext, the 35 subjects were presented with either keywords or phrases extracted automatically. The resulting abstracts, and the times taken, were recorded automatically; some additional information was gathered by oral questionnaire. Results showed considerable variation among subjects, but 37% found the keywords or phrases quite or very useful in writing their abstracts. Statistical analysis failed to support deveral hypothesised relations; phrases were not viewed as significantly more helpful than keywords; and abstracting experience did not correlate with originality of wording, approximation of the author abstract, or greater conciseness. Results also suggested possible modifications to the software
    Source
    Global complexity: information, chaos and control. Proceedings of the 59th Annual Meeting of the American Society for Information Science, ASIS'96, Baltimore, Maryland, 21-24 Oct 1996. Ed.: S. Hardin
  13. Craven, T.C.: Abstracts produced using computer assistance (2000) 0.02
    0.016001003 = product of:
      0.07200451 = sum of:
        0.014200641 = weight(_text_:of in 4809) [ClassicSimilarity], result of:
          0.014200641 = score(doc=4809,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 4809, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4809)
        0.05780387 = weight(_text_:software in 4809) [ClassicSimilarity], result of:
          0.05780387 = score(doc=4809,freq=4.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.3719205 = fieldWeight in 4809, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=4809)
      0.22222222 = coord(2/9)
    
    Abstract
    Experimental subjects wrote abstracts using a simplified version of the TEXNET abstracting assistance software. In addition to the full text, subjects were presented with either keywords or phrases extracted automatically. The resulting abstracts, and the times taken, were recorded automatically; some additional information was gathered by oral questionnaire. Selected abstracts produced were evaluated on various criteria by independent raters. Results showed considerable variation among subjects, but 37% found the keywords or phrases 'quite' or 'very' useful in writing their abstracts. Statistical analysis failed to support several hypothesized relations: phrases were not viewed as significantly more helpful than keywords; and abstracting experience did not correlate with originality of wording, approximation of the author abstract, or greater conciseness. Requiring further study are some unanticipated strong correlations including the following: Windows experience and writing an abstract like the author's; experience reading abstracts and thinking one had written a good abstract; gender and abstract length; gender and use of words and phrases from the original text. Results have also suggested possible modifications to the TEXNET software
    Source
    Journal of the American Society for Information Science. 51(2000) no.8, S.745-756
  14. Xu, D.; Cheng, G.; Qu, Y.: Preferences in Wikipedia abstracts : empirical findings and implications for automatic entity summarization (2014) 0.02
    0.015648767 = product of:
      0.07041945 = sum of:
        0.050336715 = weight(_text_:applications in 2700) [ClassicSimilarity], result of:
          0.050336715 = score(doc=2700,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 2700, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=2700)
        0.020082738 = weight(_text_:of in 2700) [ClassicSimilarity], result of:
          0.020082738 = score(doc=2700,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 2700, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2700)
      0.22222222 = coord(2/9)
    
    Abstract
    The volume of entity-centric structured data grows rapidly on the Web. The description of an entity, composed of property-value pairs (a.k.a. features), has become very large in many applications. To avoid information overload, efforts have been made to automatically select a limited number of features to be shown to the user based on certain criteria, which is called automatic entity summarization. However, to the best of our knowledge, there is a lack of extensive studies on how humans rank and select features in practice, which can provide empirical support and inspire future research. In this article, we present a large-scale statistical analysis of the descriptions of entities provided by DBpedia and the abstracts of their corresponding Wikipedia articles, to empirically study, along several different dimensions, which kinds of features are preferable when humans summarize. Implications for automatic entity summarization are drawn from the findings.
  15. Brandow, R.; Mitze, K.; Rau, L.F.: Automatic condensation of electronic publications by sentence selection (1995) 0.01
    0.012245992 = product of:
      0.055106964 = sum of:
        0.022403233 = weight(_text_:of in 2929) [ClassicSimilarity], result of:
          0.022403233 = score(doc=2929,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.36569026 = fieldWeight in 2929, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=2929)
        0.03270373 = weight(_text_:systems in 2929) [ClassicSimilarity], result of:
          0.03270373 = score(doc=2929,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2716328 = fieldWeight in 2929, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=2929)
      0.22222222 = coord(2/9)
    
    Abstract
    Description of a system that performs domain-independent automatic condensation of news from a large commercial news service encompassing 41 different publications. This system was evaluated against a system that condensed the same articles using only the first portions of the texts (the löead), up to the target length of the summaries. 3 lengths of articles were evaluated for 250 documents by both systems, totalling 1.500 suitability judgements in all. The lead-based summaries outperformed the 'intelligent' summaries significantly, achieving acceptability ratings of over 90%, compared to 74,7%
  16. Díaz, A.; Gervás, P.: User-model based personalized summarization (2007) 0.01
    0.011942157 = product of:
      0.053739704 = sum of:
        0.019052157 = weight(_text_:of in 952) [ClassicSimilarity], result of:
          0.019052157 = score(doc=952,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.3109903 = fieldWeight in 952, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=952)
        0.034687545 = weight(_text_:systems in 952) [ClassicSimilarity], result of:
          0.034687545 = score(doc=952,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 952, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=952)
      0.22222222 = coord(2/9)
    
    Abstract
    The potential of summary personalization is high, because a summary that would be useless to decide the relevance of a document if summarized in a generic manner, may be useful if the right sentences are selected that match the user interest. In this paper we defend the use of a personalized summarization facility to maximize the density of relevance of selections sent by a personalized information system to a given user. The personalization is applied to the digital newspaper domain and it used a user-model that stores long and short term interests using four reference systems: sections, categories, keywords and feedback terms. On the other side, it is crucial to measure how much information is lost during the summarization process, and how this information loss may affect the ability of the user to judge the relevance of a given document. The results obtained in two personalization systems show that personalized summaries perform better than generic and generic-personalized summaries in terms of identifying documents that satisfy user preferences. We also considered a user-centred direct evaluation that showed a high level of user satisfaction with the summaries.
  17. Over, P.; Dang, H.; Harman, D.: DUC in context (2007) 0.01
    0.009928614 = product of:
      0.044678763 = sum of:
        0.011975031 = weight(_text_:of in 934) [ClassicSimilarity], result of:
          0.011975031 = score(doc=934,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.19546966 = fieldWeight in 934, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=934)
        0.03270373 = weight(_text_:systems in 934) [ClassicSimilarity], result of:
          0.03270373 = score(doc=934,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2716328 = fieldWeight in 934, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=934)
      0.22222222 = coord(2/9)
    
    Abstract
    Recent years have seen increased interest in text summarization with emphasis on evaluation of prototype systems. Many factors can affect the design of such evaluations, requiring choices among competing alternatives. This paper examines several major themes running through three evaluations: SUMMAC, NTCIR, and DUC, with a concentration on DUC. The themes are extrinsic and intrinsic evaluation, evaluation procedures and methods, generic versus focused summaries, single- and multi-document summaries, length and compression issues, extracts versus abstracts, and issues with genre.
  18. Wang, S.; Koopman, R.: Embed first, then predict (2019) 0.01
    0.009304364 = product of:
      0.04186964 = sum of:
        0.012963352 = weight(_text_:of in 5400) [ClassicSimilarity], result of:
          0.012963352 = score(doc=5400,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.21160212 = fieldWeight in 5400, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5400)
        0.02890629 = weight(_text_:systems in 5400) [ClassicSimilarity], result of:
          0.02890629 = score(doc=5400,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 5400, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5400)
      0.22222222 = coord(2/9)
    
    Abstract
    Automatic subject prediction is a desirable feature for modern digital library systems, as manual indexing can no longer cope with the rapid growth of digital collections. It is also desirable to be able to identify a small set of entities (e.g., authors, citations, bibliographic records) which are most relevant to a query. This gets more difficult when the amount of data increases dramatically. Data sparsity and model scalability are the major challenges to solving this type of extreme multilabel classification problem automatically. In this paper, we propose to address this problem in two steps: we first embed different types of entities into the same semantic space, where similarity could be computed easily; second, we propose a novel non-parametric method to identify the most relevant entities in addition to direct semantic similarities. We show how effectively this approach predicts even very specialised subjects, which are associated with few documents in the training set and are more problematic for a classifier.
    Footnote
    Beitrag eines Special Issue: Research Information Systems and Science Classifications; including papers from "Trajectories for Research: Fathoming the Promise of the NARCIS Classification," 27-28 September 2018, The Hague, The Netherlands.
  19. Goh, A.; Hui, S.C.: TES: a text extraction system (1996) 0.01
    0.008925734 = product of:
      0.040165804 = sum of:
        0.018934188 = weight(_text_:of in 6599) [ClassicSimilarity], result of:
          0.018934188 = score(doc=6599,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.3090647 = fieldWeight in 6599, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=6599)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 6599) [ClassicSimilarity], result of:
              0.042463228 = score(doc=6599,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 6599, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6599)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    With the onset of the information explosion arising from digital libraries and access to a wealth of information through the Internet, the need to efficiently determine the relevance of a document becomes even more urgent. Describes a text extraction system (TES), which retrieves a set of sentences from a document to form an indicative abstract. Such an automated process enables information to be filtered more quickly. Discusses the combination of various text extraction techniques. Compares results with manually produced abstracts
    Date
    26. 2.1997 10:22:43
  20. Abdi, A.; Idris, N.; Alguliev, R.M.; Aliguliyev, R.M.: Automatic summarization assessment through a combination of semantic and syntactic information for intelligent educational systems (2015) 0.01
    0.008606319 = product of:
      0.03872844 = sum of:
        0.014200641 = weight(_text_:of in 2681) [ClassicSimilarity], result of:
          0.014200641 = score(doc=2681,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 2681, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2681)
        0.0245278 = weight(_text_:systems in 2681) [ClassicSimilarity], result of:
          0.0245278 = score(doc=2681,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 2681, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=2681)
      0.22222222 = coord(2/9)
    
    Abstract
    Summary writing is a process for creating a short version of a source text. It can be used as a measure of understanding. As grading students' summaries is a very time-consuming task, computer-assisted assessment can help teachers perform the grading more effectively. Several techniques, such as BLEU, ROUGE, N-gram co-occurrence, Latent Semantic Analysis (LSA), LSA_Ngram and LSA_ERB, have been proposed to support the automatic assessment of students' summaries. Since these techniques are more suitable for long texts, their performance is not satisfactory for the evaluation of short summaries. This paper proposes a specialized method that works well in assessing short summaries. Our proposed method integrates the semantic relations between words, and their syntactic composition. As a result, the proposed method is able to obtain high accuracy and improve the performance compared with the current techniques. Experiments have displayed that it is to be preferred over the existing techniques. A summary evaluation system based on the proposed method has also been developed.

Years

Languages

  • e 94
  • d 5
  • chi 2
  • More… Less…

Types

  • a 97
  • m 3
  • el 1
  • r 1
  • More… Less…