Search (274 results, page 1 of 14)

  • × theme_ss:"Automatisches Indexieren"
  1. Ward, M.L.: ¬The future of the human indexer (1996) 0.04
    0.043612197 = product of:
      0.09812744 = sum of:
        0.016802425 = weight(_text_:of in 7244) [ClassicSimilarity], result of:
          0.016802425 = score(doc=7244,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2742677 = fieldWeight in 7244, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=7244)
        0.0245278 = weight(_text_:systems in 7244) [ClassicSimilarity], result of:
          0.0245278 = score(doc=7244,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 7244, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=7244)
        0.040873505 = weight(_text_:software in 7244) [ClassicSimilarity], result of:
          0.040873505 = score(doc=7244,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.2629875 = fieldWeight in 7244, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=7244)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 7244) [ClassicSimilarity], result of:
              0.031847417 = score(doc=7244,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 7244, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7244)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    Considers the principles of indexing and the intellectual skills involved in order to determine what automatic indexing systems would be required in order to supplant or complement the human indexer. Good indexing requires: considerable prior knowledge of the literature; judgement as to what to index and what depth to index; reading skills; abstracting skills; and classification skills, Illustrates these features with a detailed description of abstracting and indexing processes involved in generating entries for the mechanical engineering database POWERLINK. Briefly assesses the possibility of replacing human indexers with specialist indexing software, with particular reference to the Object Analyzer from the InTEXT automatic indexing system and using the criteria described for human indexers. At present, it is unlikely that the automatic indexer will replace the human indexer, but when more primary texts are available in electronic form, it may be a useful productivity tool for dealing with large quantities of low grade texts (should they be wanted in the database)
    Date
    9. 2.1997 18:44:22
    Source
    Journal of librarianship and information science. 28(1996) no.4, S.217-225
  2. Milstead, J.L.: Thesauri in a full-text world (1998) 0.04
    0.041063324 = product of:
      0.092392474 = sum of:
        0.041947264 = weight(_text_:applications in 2337) [ClassicSimilarity], result of:
          0.041947264 = score(doc=2337,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 2337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2337)
        0.016735615 = weight(_text_:of in 2337) [ClassicSimilarity], result of:
          0.016735615 = score(doc=2337,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27317715 = fieldWeight in 2337, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2337)
        0.020439833 = weight(_text_:systems in 2337) [ClassicSimilarity], result of:
          0.020439833 = score(doc=2337,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 2337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2337)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 2337) [ClassicSimilarity], result of:
              0.026539518 = score(doc=2337,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 2337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2337)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    Despite early claims to the contemporary, thesauri continue to find use as access tools for information in the full-text environment. Their mode of use is changing, but this change actually represents an expansion rather than a contrdiction of their utility. Thesauri and similar vocabulary tools can complement full-text access by aiding users in focusing their searches, by supplementing the linguistic analysis of the text search engine, and even by serving as one of the tools used by the linguistic engine for its analysis. While human indexing contunues to be used for many databases, the trend is to increase the use of machine aids for this purpose. All machine-aided indexing (MAI) systems rely on thesauri as the basis for term selection. In the 21st century, the balance of effort between human and machine will change at both input and output, but thesauri will continue to play an important role for the foreseeable future
    Date
    22. 9.1997 19:16:05
    Imprint
    Urbana-Champaign, IL : Illinois University at Urbana-Champaign, Graduate School of Library and Information Science
    Source
    Visualizing subject access for 21st century information resources: Papers presented at the 1997 Clinic on Library Applications of Data Processing, 2-4 Mar 1997, Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign. Ed.: P.A. Cochrane et al
  3. Moreno, J.M.T.: Automatic text summarization (2014) 0.04
    0.039964683 = product of:
      0.11989404 = sum of:
        0.0726548 = weight(_text_:applications in 1518) [ClassicSimilarity], result of:
          0.0726548 = score(doc=1518,freq=6.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.42124623 = fieldWeight in 1518, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1518)
        0.018332949 = weight(_text_:of in 1518) [ClassicSimilarity], result of:
          0.018332949 = score(doc=1518,freq=24.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2992506 = fieldWeight in 1518, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1518)
        0.02890629 = weight(_text_:systems in 1518) [ClassicSimilarity], result of:
          0.02890629 = score(doc=1518,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 1518, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1518)
      0.33333334 = coord(3/9)
    
    Abstract
    This new textbook examines the motivations and the different algorithms for automatic document summarization (ADS). We performed a recent state of the art. The book shows the main problems of ADS, difficulties and the solutions provided by the community. It presents recent advances in ADS, as well as current applications and trends. The approaches are statistical, linguistic and symbolic. Several exemples are included in order to clarify the theoretical concepts. The books currently available in the area of Automatic Document Summarization are not recent. Powerful algorithms have been developed in recent years that include several applications of ADS. The development of recent technology has impacted on the development of algorithms and their applications. The massive use of social networks and the new forms of the technology requires the adaptation of the classical methods of text summarizers. This is a new textbook on Automatic Text Summarization, based on teaching materials used in two or one-semester courses. It presents a extensive state-of-art and describes the new systems on the subject. Previous automatic summarization books have been either collections of specialized papers, or else authored books with only a chapter or two devoted to the field as a whole. In other hand, the classic books on the subject are not recent.
    Content
    Automatic Text Summarization Some Important Concepts 23 Single document Summarization 53 Guided Multi-Document Summarization 109 Emerging systems 151 Source and DomainSpecific Summarization 179 Text Abstracting 219 Evaluating Document Summaries 243 Conclusion 275 Information Retrieval NLP and Automatic Text Summarization 281 Automatic Text Summarization Resources 305
  4. Smart, G.: Using language analysis to manage information (1993) 0.04
    0.037574366 = product of:
      0.1127231 = sum of:
        0.011975031 = weight(_text_:of in 4423) [ClassicSimilarity], result of:
          0.011975031 = score(doc=4423,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.19546966 = fieldWeight in 4423, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=4423)
        0.046250064 = weight(_text_:systems in 4423) [ClassicSimilarity], result of:
          0.046250064 = score(doc=4423,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.38414678 = fieldWeight in 4423, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=4423)
        0.054498006 = weight(_text_:software in 4423) [ClassicSimilarity], result of:
          0.054498006 = score(doc=4423,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.35064998 = fieldWeight in 4423, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0625 = fieldNorm(doc=4423)
      0.33333334 = coord(3/9)
    
    Abstract
    The ESPRIT project SIMPR developed software to analyse documents and generate indexes for them. Of immediate application as a document indexing and classification system, this also offers a technology for information modelling that has broader implications, supporting many new uses for information management softeware. The project was based on the assumption that information can only be managed successfully by computer systems that can view the information contained in a document through the language in which the document is written, and that systems need to be sufficiently flexible to respond to the changing requirements of document use
  5. Greiner-Petter, A.; Schubotz, M.; Cohl, H.S.; Gipp, B.: Semantic preserving bijective mappings for expressions involving special functions between computer algebra systems and document preparation systems (2019) 0.04
    0.03700888 = product of:
      0.08326998 = sum of:
        0.012701438 = weight(_text_:of in 5499) [ClassicSimilarity], result of:
          0.012701438 = score(doc=5499,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732687 = fieldWeight in 5499, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=5499)
        0.03270373 = weight(_text_:systems in 5499) [ClassicSimilarity], result of:
          0.03270373 = score(doc=5499,freq=8.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2716328 = fieldWeight in 5499, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=5499)
        0.027249003 = weight(_text_:software in 5499) [ClassicSimilarity], result of:
          0.027249003 = score(doc=5499,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.17532499 = fieldWeight in 5499, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03125 = fieldNorm(doc=5499)
        0.010615807 = product of:
          0.021231614 = sum of:
            0.021231614 = weight(_text_:22 in 5499) [ClassicSimilarity], result of:
              0.021231614 = score(doc=5499,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.15476047 = fieldWeight in 5499, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5499)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    Purpose Modern mathematicians and scientists of math-related disciplines often use Document Preparation Systems (DPS) to write and Computer Algebra Systems (CAS) to calculate mathematical expressions. Usually, they translate the expressions manually between DPS and CAS. This process is time-consuming and error-prone. The purpose of this paper is to automate this translation. This paper uses Maple and Mathematica as the CAS, and LaTeX as the DPS. Design/methodology/approach Bruce Miller at the National Institute of Standards and Technology (NIST) developed a collection of special LaTeX macros that create links from mathematical symbols to their definitions in the NIST Digital Library of Mathematical Functions (DLMF). The authors are using these macros to perform rule-based translations between the formulae in the DLMF and CAS. Moreover, the authors develop software to ease the creation of new rules and to discover inconsistencies. Findings The authors created 396 mappings and translated 58.8 percent of DLMF formulae (2,405 expressions) successfully between Maple and DLMF. For a significant percentage, the special function definitions in Maple and the DLMF were different. An atomic symbol in one system maps to a composite expression in the other system. The translator was also successfully used for automatic verification of mathematical online compendia and CAS. The evaluation techniques discovered two errors in the DLMF and one defect in Maple. Originality/value This paper introduces the first translation tool for special functions between LaTeX and CAS. The approach improves error-prone manual translations and can be used to verify mathematical online compendia and CAS.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 71(2019) no.3, S.415-439
  6. Jones, S.; Paynter, G.W.: Automatic extractionof document keyphrases for use in digital libraries : evaluations and applications (2002) 0.03
    0.029196393 = product of:
      0.087589175 = sum of:
        0.041947264 = weight(_text_:applications in 601) [ClassicSimilarity], result of:
          0.041947264 = score(doc=601,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 601, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=601)
        0.016735615 = weight(_text_:of in 601) [ClassicSimilarity], result of:
          0.016735615 = score(doc=601,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27317715 = fieldWeight in 601, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=601)
        0.02890629 = weight(_text_:systems in 601) [ClassicSimilarity], result of:
          0.02890629 = score(doc=601,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 601, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=601)
      0.33333334 = coord(3/9)
    
    Abstract
    This article describes an evaluation of the Kea automatic keyphrase extraction algorithm. Document keyphrases are conventionally used as concise descriptors of document content, and are increasingly used in novel ways, including document clustering, searching and browsing interfaces, and retrieval engines. However, it is costly and time consuming to manually assign keyphrases to documents, motivating the development of tools that automatically perform this function. Previous studies have evaluated Kea's performance by measuring its ability to identify author keywords and keyphrases, but this methodology has a number of well-known limitations. The results presented in this article are based on evaluations by human assessors of the quality and appropriateness of Kea keyphrases. The results indicate that, in general, Kea produces keyphrases that are rated positively by human assessors. However, typical Kea settings can degrade performance, particularly those relating to keyphrase length and domain specificity. We found that for some settings, Kea's performance is better than that of similar systems, and that Kea's ranking of extracted keyphrases is effective. We also determined that author-specified keyphrases appear to exhibit an inherent ranking, and that they are rated highly and therefore suitable for use in training and evaluation of automatic keyphrasing systems.
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.8, S.653-677
  7. Markoff, J.: Researchers announce advance in image-recognition software (2014) 0.03
    0.02862486 = product of:
      0.08587458 = sum of:
        0.014249863 = weight(_text_:of in 1875) [ClassicSimilarity], result of:
          0.014249863 = score(doc=1875,freq=58.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23260197 = fieldWeight in 1875, product of:
              7.615773 = tf(freq=58.0), with freq of:
                58.0 = termFreq=58.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1875)
        0.010219917 = weight(_text_:systems in 1875) [ClassicSimilarity], result of:
          0.010219917 = score(doc=1875,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.08488525 = fieldWeight in 1875, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1875)
        0.061404802 = weight(_text_:software in 1875) [ClassicSimilarity], result of:
          0.061404802 = score(doc=1875,freq=26.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.39508954 = fieldWeight in 1875, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1875)
      0.33333334 = coord(3/9)
    
    Abstract
    Two groups of scientists, working independently, have created artificial intelligence software capable of recognizing and describing the content of photographs and videos with far greater accuracy than ever before, sometimes even mimicking human levels of understanding.
    Content
    "Until now, so-called computer vision has largely been limited to recognizing individual objects. The new software, described on Monday by researchers at Google and at Stanford University, teaches itself to identify entire scenes: a group of young men playing Frisbee, for example, or a herd of elephants marching on a grassy plain. The software then writes a caption in English describing the picture. Compared with human observations, the researchers found, the computer-written descriptions are surprisingly accurate. The advances may make it possible to better catalog and search for the billions of images and hours of video available online, which are often poorly described and archived. At the moment, search engines like Google rely largely on written language accompanying an image or video to ascertain what it contains. "I consider the pixel data in images and video to be the dark matter of the Internet," said Fei-Fei Li, director of the Stanford Artificial Intelligence Laboratory, who led the research with Andrej Karpathy, a graduate student. "We are now starting to illuminate it." Dr. Li and Mr. Karpathy published their research as a Stanford University technical report. The Google team published their paper on arXiv.org, an open source site hosted by Cornell University.
    In the longer term, the new research may lead to technology that helps the blind and robots navigate natural environments. But it also raises chilling possibilities for surveillance. During the past 15 years, video cameras have been placed in a vast number of public and private spaces. In the future, the software operating the cameras will not only be able to identify particular humans via facial recognition, experts say, but also identify certain types of behavior, perhaps even automatically alerting authorities. Two years ago Google researchers created image-recognition software and presented it with 10 million images taken from YouTube videos. Without human guidance, the program trained itself to recognize cats - a testament to the number of cat videos on YouTube. Current artificial intelligence programs in new cars already can identify pedestrians and bicyclists from cameras positioned atop the windshield and can stop the car automatically if the driver does not take action to avoid a collision. But "just single object recognition is not very beneficial," said Ali Farhadi, a computer scientist at the University of Washington who has published research on software that generates sentences from digital pictures. "We've focused on objects, and we've ignored verbs," he said, adding that these programs do not grasp what is going on in an image. Both the Google and Stanford groups tackled the problem by refining software programs known as neural networks, inspired by our understanding of how the brain works. Neural networks can "train" themselves to discover similarities and patterns in data, even when their human creators do not know the patterns exist.
    In living organisms, webs of neurons in the brain vastly outperform even the best computer-based networks in perception and pattern recognition. But by adopting some of the same architecture, computers are catching up, learning to identify patterns in speech and imagery with increasing accuracy. The advances are apparent to consumers who use Apple's Siri personal assistant, for example, or Google's image search. Both groups of researchers employed similar approaches, weaving together two types of neural networks, one focused on recognizing images and the other on human language. In both cases the researchers trained the software with relatively small sets of digital images that had been annotated with descriptive sentences by humans. After the software programs "learned" to see patterns in the pictures and description, the researchers turned them on previously unseen images. The programs were able to identify objects and actions with roughly double the accuracy of earlier efforts, although still nowhere near human perception capabilities. "I was amazed that even with the small amount of training data that we were able to do so well," said Oriol Vinyals, a Google computer scientist who wrote the paper with Alexander Toshev, Samy Bengio and Dumitru Erhan, members of the Google Brain project. "The field is just starting, and we will see a lot of increases."
    Computer vision specialists said that despite the improvements, these software systems had made only limited progress toward the goal of digitally duplicating human vision and, even more elusive, understanding. "I don't know that I would say this is 'understanding' in the sense we want," said John R. Smith, a senior manager at I.B.M.'s T.J. Watson Research Center in Yorktown Heights, N.Y. "I think even the ability to generate language here is very limited." But the Google and Stanford teams said that they expect to see significant increases in accuracy as they improve their software and train these programs with larger sets of annotated images. A research group led by Tamara L. Berg, a computer scientist at the University of North Carolina at Chapel Hill, is training a neural network with one million images annotated by humans. "You're trying to tell the story behind the image," she said. "A natural scene will be very complex, and you want to pick out the most important objects in the image.""
    Footnote
    A version of this article appears in print on November 18, 2014, on page A13 of the New York edition with the headline: Advance Reported in Content-Recognition Software. Vgl.: http://cs.stanford.edu/people/karpathy/cvpr2015.pdf. Vgl. auch: http://googleresearch.blogspot.de/2014/11/a-picture-is-worth-thousand-coherent.html. https://news.ycombinator.com/item?id=8621658 Vgl. auch: https://news.ycombinator.com/item?id=8621658.
  8. Humphrey, S.M.; Névéol, A.; Browne, A.; Gobeil, J.; Ruch, P.; Darmoni, S.J.: Comparing a rule-based versus statistical system for automatic categorization of MEDLINE documents according to biomedical specialty (2009) 0.03
    0.028607449 = product of:
      0.085822344 = sum of:
        0.041947264 = weight(_text_:applications in 3300) [ClassicSimilarity], result of:
          0.041947264 = score(doc=3300,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 3300, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3300)
        0.014968789 = weight(_text_:of in 3300) [ClassicSimilarity], result of:
          0.014968789 = score(doc=3300,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 3300, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3300)
        0.02890629 = weight(_text_:systems in 3300) [ClassicSimilarity], result of:
          0.02890629 = score(doc=3300,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 3300, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3300)
      0.33333334 = coord(3/9)
    
    Abstract
    Automatic document categorization is an important research problem in Information Science and Natural Language Processing. Many applications, including, Word Sense Disambiguation and Information Retrieval in large collections, can benefit from such categorization. This paper focuses on automatic categorization of documents from the biomedical literature into broad discipline-based categories. Two different systems are described and contrasted: CISMeF, which uses rules based on human indexing of the documents by the Medical Subject Headings (MeSH) controlled vocabulary in order to assign metaterms (MTs), and Journal Descriptor Indexing (JDI), based on human categorization of about 4,000 journals and statistical associations between journal descriptors (JDs) and textwords in the documents. We evaluate and compare the performance of these systems against a gold standard of humanly assigned categories for 100 MEDLINE documents, using six measures selected from trec_eval. The results show that for five of the measures performance is comparable, and for one measure JDI is superior. We conclude that these results favor JDI, given the significantly greater intellectual overhead involved in human indexing and maintaining a rule base for mapping MeSH terms to MTs. We also note a JDI method that associates JDs with MeSH indexing rather than textwords, and it may be worthwhile to investigate whether this JDI method (statistical) and CISMeF (rule-based) might be combined and then evaluated showing they are complementary to one another.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.12, S.2530-2539
  9. Moens, M.F.: Automatic indexing and abstracting of document texts (2000) 0.02
    0.023347465 = product of:
      0.105063595 = sum of:
        0.08389453 = weight(_text_:applications in 6892) [ClassicSimilarity], result of:
          0.08389453 = score(doc=6892,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.4864132 = fieldWeight in 6892, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.078125 = fieldNorm(doc=6892)
        0.021169065 = weight(_text_:of in 6892) [ClassicSimilarity], result of:
          0.021169065 = score(doc=6892,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34554482 = fieldWeight in 6892, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=6892)
      0.22222222 = coord(2/9)
    
    Content
    Need for indexing and abstracting texts; attributes of texts; text representations and their use; selection of natural language index terms; assignment of controlled language index texts; automatic abstracting; applications
  10. Golub, K.; Soergel, D.; Buchanan, G.; Tudhope, D.; Lykke, M.; Hiom, D.: ¬A framework for evaluating automatic indexing or classification in the context of retrieval (2016) 0.02
    0.023156626 = product of:
      0.06946988 = sum of:
        0.014968789 = weight(_text_:of in 3311) [ClassicSimilarity], result of:
          0.014968789 = score(doc=3311,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 3311, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3311)
        0.020439833 = weight(_text_:systems in 3311) [ClassicSimilarity], result of:
          0.020439833 = score(doc=3311,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 3311, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3311)
        0.034061253 = weight(_text_:software in 3311) [ClassicSimilarity], result of:
          0.034061253 = score(doc=3311,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.21915624 = fieldWeight in 3311, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3311)
      0.33333334 = coord(3/9)
    
    Abstract
    Tools for automatic subject assignment help deal with scale and sustainability in creating and enriching metadata, establishing more connections across and between resources and enhancing consistency. Although some software vendors and experimental researchers claim the tools can replace manual subject indexing, hard scientific evidence of their performance in operating information environments is scarce. A major reason for this is that research is usually conducted in laboratory conditions, excluding the complexities of real-life systems and situations. The article reviews and discusses issues with existing evaluation approaches such as problems of aboutness and relevance assessments, implying the need to use more than a single "gold standard" method when evaluating indexing and retrieval, and proposes a comprehensive evaluation framework. The framework is informed by a systematic review of the literature on evaluation approaches: evaluating indexing quality directly through assessment by an evaluator or through comparison with a gold standard, evaluating the quality of computer-assisted indexing directly in the context of an indexing workflow, and evaluating indexing quality indirectly through analyzing retrieval performance.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.1, S.3-16
  11. Witschel, H.F.: Terminology extraction and automatic indexing : comparison and qualitative evaluation of methods (2005) 0.02
    0.021405008 = product of:
      0.09632254 = sum of:
        0.0726548 = weight(_text_:applications in 1842) [ClassicSimilarity], result of:
          0.0726548 = score(doc=1842,freq=6.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.42124623 = fieldWeight in 1842, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1842)
        0.023667734 = weight(_text_:of in 1842) [ClassicSimilarity], result of:
          0.023667734 = score(doc=1842,freq=40.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.38633084 = fieldWeight in 1842, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1842)
      0.22222222 = coord(2/9)
    
    Abstract
    Many terminology engineering processes involve the task of automatic terminology extraction: before the terminology of a given domain can be modelled, organised or standardised, important concepts (or terms) of this domain have to be identified and fed into terminological databases. These serve in further steps as a starting point for compiling dictionaries, thesauri or maybe even terminological ontologies for the domain. For the extraction of the initial concepts, extraction methods are needed that operate on specialised language texts. On the other hand, many machine learning or information retrieval applications require automatic indexing techniques. In Machine Learning applications concerned with the automatic clustering or classification of texts, often feature vectors are needed that describe the contents of a given text briefly but meaningfully. These feature vectors typically consist of a fairly small set of index terms together with weights indicating their importance. Short but meaningful descriptions of document contents as provided by good index terms are also useful to humans: some knowledge management applications (e.g. topic maps) use them as a set of basic concepts (topics). The author believes that the tasks of terminology extraction and automatic indexing have much in common and can thus benefit from the same set of basic algorithms. It is the goal of this paper to outline some methods that may be used in both contexts, but also to find the discriminating factors between the two tasks that call for the variation of parameters or application of different techniques. The discussion of these methods will be based on statistical, syntactical and especially morphological properties of (index) terms. The paper is concluded by the presentation of some qualitative and quantitative results comparing statistical and morphological methods.
    Source
    TKE 2005: Proc. of Terminology and Knowledge Engineering (TKE) 2005
  12. Search Engines and Beyond : Developing efficient knowledge management systems, April 19-20 1999, Boston, Mass (1999) 0.02
    0.021254174 = product of:
      0.06376252 = sum of:
        0.013388492 = weight(_text_:of in 2596) [ClassicSimilarity], result of:
          0.013388492 = score(doc=2596,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.21854173 = fieldWeight in 2596, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=2596)
        0.023125032 = weight(_text_:systems in 2596) [ClassicSimilarity], result of:
          0.023125032 = score(doc=2596,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.19207339 = fieldWeight in 2596, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=2596)
        0.027249003 = weight(_text_:software in 2596) [ClassicSimilarity], result of:
          0.027249003 = score(doc=2596,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.17532499 = fieldWeight in 2596, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03125 = fieldNorm(doc=2596)
      0.33333334 = coord(3/9)
    
    Abstract
    This series of meetings originated in Albuquerque, New Mexico in 1995. This inaugural meeting (part of an ASIDIC series) was transplanted to Bath in England (1996 and 1997) and then to Boston, Massachusetts (1998 and 1999). The Search Engines Meetings bring together commercial search engine developers, academics and corporate professionals to learn from each other. Infonortics, sponsor of meetings post-1995 with Ev Brenner, plans to continue the same success in Boston in 2000.
    Content
    Ramana Rao (Inxight, Palo Alto, CA) 7 ± 2 Insights on achieving Effective Information Access Session One: Updates and a twelve month perspective Danny Sullivan (Search Engine Watch, US / England) Portalization and other search trends Carol Tenopir (University of Tennessee) Search realities faced by end users and professional searchers Session Two: Today's search engines and beyond Daniel Hoogterp (Retrieval Technologies, McLean, VA) Effective presentation and utilization of search techniques Rick Kenny (Fulcrum Technologies, Ontario, Canada) Beyond document clustering: The knowledge impact statement Gary Stock (Ingenius, Kalamazoo, MI) Automated change monitoring Gary Culliss (Direct Hit, Wellesley Hills, MA) User popularity ranked search engines Byron Dom (IBM, CA) Automatically finding the best pages on the World Wide Web (CLEVER) Peter Tomassi (LookSmart, San Francisco, CA) Adding human intellect to search technology Session Three: Panel discussion: Human v automated categorization and editing Ev Brenner (New York, NY)- Chairman James Callan (University of Massachusetts, MA) Marc Krellenstein (Northern Light Technology, Cambridge, MA) Dan Miller (Ask Jeeves, Berkeley, CA) Session Four: Updates and a twelve month perspective Steve Arnold (AIT, Harrods Creek, KY) Review: The leading edge in search and retrieval software Ellen Voorhees (NIST, Gaithersburg, MD) TREC update Session Five: Search engines now and beyond Intelligent Agents John Snyder (Muscat, Cambridge, England) Practical issues behind intelligent agents Text summarization Therese Firmin, (Dept of Defense, Ft George G. Meade, MD) The TIPSTER/SUMMAC evaluation of automatic text summarization systems Cross language searching Elizabeth Liddy (TextWise, Syracuse, NY) A conceptual interlingua approach to cross-language retrieval. Video search and retrieval Armon Amir (IBM, Almaden, CA) CueVideo: Modular system for automatic indexing and browsing of video/audio Speech recognition Michael Witbrock (Lycos, Waltham, MA) Retrieval of spoken documents Visualization James A. Wise (Integral Visuals, Richland, WA) Information visualization in the new millennium: Emerging science or passing fashion? Text mining David Evans (Claritech, Pittsburgh, PA) Text mining - towards decision support
  13. Chowdhury, G.G.: Natural language processing and information retrieval : pt.1: basic issues; pt.2: major applications (1991) 0.02
    0.020995347 = product of:
      0.09447906 = sum of:
        0.08389453 = weight(_text_:applications in 3313) [ClassicSimilarity], result of:
          0.08389453 = score(doc=3313,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.4864132 = fieldWeight in 3313, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.078125 = fieldNorm(doc=3313)
        0.010584532 = weight(_text_:of in 3313) [ClassicSimilarity], result of:
          0.010584532 = score(doc=3313,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17277241 = fieldWeight in 3313, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=3313)
      0.22222222 = coord(2/9)
    
    Abstract
    Reviews the basic issues and procedures involved in natural language processing of textual material for final use in information retrieval. Covers: natural language processing; natural language understanding; syntactic and semantic analysis; parsing; knowledge bases and knowledge representation
  14. Hlava, M.M.K.: Automatic indexing : comparing rule-based and statistics-based indexing systems (2005) 0.02
    0.020974858 = product of:
      0.09438686 = sum of:
        0.057231534 = weight(_text_:systems in 6265) [ClassicSimilarity], result of:
          0.057231534 = score(doc=6265,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.47535738 = fieldWeight in 6265, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.109375 = fieldNorm(doc=6265)
        0.037155323 = product of:
          0.074310645 = sum of:
            0.074310645 = weight(_text_:22 in 6265) [ClassicSimilarity], result of:
              0.074310645 = score(doc=6265,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.5416616 = fieldWeight in 6265, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6265)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Source
    Information outlook. 9(2005) no.8, S.22-23
  15. Hlava, M.M.K.: Machine aided indexing (MAI) in a multilingual environment (1993) 0.02
    0.020682735 = product of:
      0.09307231 = sum of:
        0.010478153 = weight(_text_:of in 7405) [ClassicSimilarity], result of:
          0.010478153 = score(doc=7405,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17103596 = fieldWeight in 7405, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7405)
        0.082594156 = weight(_text_:software in 7405) [ClassicSimilarity], result of:
          0.082594156 = score(doc=7405,freq=6.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.53142565 = fieldWeight in 7405, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7405)
      0.22222222 = coord(2/9)
    
    Abstract
    The machine aided indexing (MAI) software devloped by Access Innovations, Inc., is a semantic based, Boolean statement, rule interpreting application with 3 modules: the MA engine which accepts input files, matches terms in the knowledge base, interprets rules, and outputs a text file with suggested indexing terms; a rule building application allowing each Boolean style rule in the knowledge base to be created or modifies; and a statistical computation module which analyzes performance of the MA software against text manually indexed by professional human indexers. The MA software can be applied across multiple languages and can be used where the text to be searched is in one language and the indexes to be output are in another
    Source
    Proceedings of the 14th National Online Meeting 1993, New York, 4-6 May 1993. Ed.: M.E. Williams
  16. Milstead, J.L.: Methodologies for subject analysis in bibliographic databases (1992) 0.02
    0.019753601 = product of:
      0.08889121 = sum of:
        0.016567415 = weight(_text_:of in 2311) [ClassicSimilarity], result of:
          0.016567415 = score(doc=2311,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2704316 = fieldWeight in 2311, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2311)
        0.07232379 = product of:
          0.14464758 = sum of:
            0.14464758 = weight(_text_:packages in 2311) [ClassicSimilarity], result of:
              0.14464758 = score(doc=2311,freq=2.0), product of:
                0.2706874 = queryWeight, product of:
                  6.9093957 = idf(docFreq=119, maxDocs=44218)
                  0.03917671 = queryNorm
                0.5343713 = fieldWeight in 2311, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.9093957 = idf(docFreq=119, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2311)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    The goal of the study was to determine the state of the art of subject analysis as applied to large bibliographic data bases. The intent was to gather and evaluate information, casting it in a form that could be applied by management. There was no attempt to determine actual costs or trade-offs among costs and possible benefits. Commercial automatic indexing packages were also reviewed. The overall conclusion was that data base producers should begin working seriously on upgrading their thesauri and codifying their indexing policies as a means of moving toward development of machine aids to indexing, but that fully automatic indexing is not yet ready for wholesale implementation
  17. Alexander, M.: Retrieving digital data with fuzzy matching (1997) 0.02
    0.019523773 = product of:
      0.08785698 = sum of:
        0.06711562 = weight(_text_:applications in 151) [ClassicSimilarity], result of:
          0.06711562 = score(doc=151,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.38913056 = fieldWeight in 151, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=151)
        0.020741362 = weight(_text_:of in 151) [ClassicSimilarity], result of:
          0.020741362 = score(doc=151,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.33856338 = fieldWeight in 151, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=151)
      0.22222222 = coord(2/9)
    
    Abstract
    In 1993 the British Library established a programme of activities entitled Initiatives for Access (IFA) to identify and develop computer applications based on the new technologies emerging in the aereas of digital and network service. Discusses the problem of the effective retrieval of digital data after its capture focusing on the product Excalibur EFS which looks at the way information is sorted at its fundamental level and identifies patterns in numbers. Looks at the benefits of Excalibur and outlines other experiments in progress as part of the IFA programme
  18. Wolfekuhler, M.R.; Punch, W.F.: Finding salient features for personal Web pages categories (1997) 0.02
    0.019223861 = product of:
      0.05767158 = sum of:
        0.010478153 = weight(_text_:of in 2673) [ClassicSimilarity], result of:
          0.010478153 = score(doc=2673,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17103596 = fieldWeight in 2673, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2673)
        0.028615767 = weight(_text_:systems in 2673) [ClassicSimilarity], result of:
          0.028615767 = score(doc=2673,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 2673, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2673)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 2673) [ClassicSimilarity], result of:
              0.037155323 = score(doc=2673,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 2673, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2673)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Examines techniques that discover features in sets of pre-categorized documents, such that similar documents can be found on the WWW. Examines techniques which will classifiy training examples with high accuracy, then explains why this is not necessarily useful. Describes a method for extracting word clusters from the raw document features. Results show that the clustering technique is successful in discovering word groups in personal Web pages which can be used to find similar information on the WWW
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue of papers from the 6th International World Wide Web conference, held 7-11 Apr 1997, Santa Clara, California
    Source
    Computer networks and ISDN systems. 29(1997) no.8, S.1147-1156
  19. Pritchard, J.: Information retrieval : smarter indexing (1991) 0.02
    0.019212324 = product of:
      0.08645546 = sum of:
        0.018332949 = weight(_text_:of in 4890) [ClassicSimilarity], result of:
          0.018332949 = score(doc=4890,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2992506 = fieldWeight in 4890, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=4890)
        0.068122506 = weight(_text_:software in 4890) [ClassicSimilarity], result of:
          0.068122506 = score(doc=4890,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.43831247 = fieldWeight in 4890, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.078125 = fieldNorm(doc=4890)
      0.22222222 = coord(2/9)
    
    Abstract
    Describes full text retrieval (FTR) which indexes every occurrence of every word except defined 'stop' words. This permits much more sophisticated searching than with keyword indexing. Also discusses document imaging processing (DIP). Lists suppliers and users of the software and describes the experiences of ESOO's Planning Division with Computer Intertrade Ltd. (CIL) ImagePro DIP and their operational practices
  20. Salton, G.; Wong, A.: Generation and search of clustered files (1978) 0.02
    0.018298382 = product of:
      0.082342714 = sum of:
        0.016935252 = weight(_text_:of in 2411) [ClassicSimilarity], result of:
          0.016935252 = score(doc=2411,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27643585 = fieldWeight in 2411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.125 = fieldNorm(doc=2411)
        0.06540746 = weight(_text_:systems in 2411) [ClassicSimilarity], result of:
          0.06540746 = score(doc=2411,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.5432656 = fieldWeight in 2411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.125 = fieldNorm(doc=2411)
      0.22222222 = coord(2/9)
    
    Source
    ACM transactions on database systems. 3(1978) no.4, S.321-346

Languages

Types

  • a 250
  • el 23
  • x 10
  • m 6
  • s 2
  • d 1
  • p 1
  • More… Less…

Classifications