Search (49 results, page 1 of 3)

  • × theme_ss:"Data Mining"
  • × year_i:[2010 TO 2020}
  1. Mining text data (2012) 0.05
    0.049125947 = product of:
      0.11053338 = sum of:
        0.04745791 = weight(_text_:applications in 362) [ClassicSimilarity], result of:
          0.04745791 = score(doc=362,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.27515686 = fieldWeight in 362, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03125 = fieldNorm(doc=362)
        0.012701438 = weight(_text_:of in 362) [ClassicSimilarity], result of:
          0.012701438 = score(doc=362,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732687 = fieldWeight in 362, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=362)
        0.023125032 = weight(_text_:systems in 362) [ClassicSimilarity], result of:
          0.023125032 = score(doc=362,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.19207339 = fieldWeight in 362, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=362)
        0.027249003 = weight(_text_:software in 362) [ClassicSimilarity], result of:
          0.027249003 = score(doc=362,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.17532499 = fieldWeight in 362, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03125 = fieldNorm(doc=362)
      0.44444445 = coord(4/9)
    
    Abstract
    Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.
    Content
    Inhalt: An Introduction to Text Mining.- Information Extraction from Text.- A Survey of Text Summarization Techniques.- A Survey of Text Clustering Algorithms.- Dimensionality Reduction and Topic Modeling.- A Survey of Text Classification Algorithms.- Transfer Learning for Text Mining.- Probabilistic Models for Text Mining.- Mining Text Streams.- Translingual Mining from Text Data.- Text Mining in Multimedia.- Text Analytics in Social Media.- A Survey of Opinion Mining and Sentiment Analysis.- Biomedical Text Mining: A Survey of Recent Progress.- Index.
    LCSH
    Multimedia systems
    Subject
    Multimedia systems
  2. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.02
    0.023708593 = product of:
      0.071125776 = sum of:
        0.022453185 = weight(_text_:of in 5011) [ClassicSimilarity], result of:
          0.022453185 = score(doc=5011,freq=36.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.36650562 = fieldWeight in 5011, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5011)
        0.03540283 = weight(_text_:systems in 5011) [ClassicSimilarity], result of:
          0.03540283 = score(doc=5011,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.29405114 = fieldWeight in 5011, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5011)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.026539518 = score(doc=5011,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    The present challenge faced by scientists working with Big Data comes in the overwhelming volume and level of detail provided by current data sets. Exceeding traditional empirical approaches, Big Data opens a new perspective on scientific work in which data comes to play a role in the development of the scientific problematic to be developed. Addressing this reconfiguration of our relationship with data through readings of Wittgenstein, Macherey, and Popper, we propose a picture of science that encourages scientists to engage with the data in a direct way, using the data itself as an instrument for scientific investigation. Using GIS as a theme, we develop the concept of cyber-human systems of thought and understanding to bridge the divide between representative (theoretical) thinking and (non-theoretical) data-driven science. At the foundation of these systems, we invoke the concept of the "semantic pixel" to establish a logical and virtual space linking data and the work of scientists. It is with this discussion of the relationship between analysts in their pursuit of knowledge and the rise of Big Data that this present discussion of the philosophical foundations of Big Data addresses the central questions raised by social informatics research.
    Date
    7. 3.2019 16:32:22
    Footnote
    Beitrag eines Special issue on social informatics of knowledge
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.4, S.402-411
  3. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.02
    0.023628347 = product of:
      0.07088504 = sum of:
        0.016735615 = weight(_text_:of in 668) [ClassicSimilarity], result of:
          0.016735615 = score(doc=668,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27317715 = fieldWeight in 668, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=668)
        0.040879667 = weight(_text_:systems in 668) [ClassicSimilarity], result of:
          0.040879667 = score(doc=668,freq=8.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.339541 = fieldWeight in 668, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=668)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
              0.026539518 = score(doc=668,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    20th century massification of higher education and research in academia is said to have produced structurally stratified higher education systems in many countries. Most manifestly, the research mission of universities appears to be divisive. Authors have claimed that the Swedish system, while formally unified, has developed into a binary state, and statistics seem to support this conclusion. This article makes use of a comprehensive statistical data source on Swedish higher education institutions to illustrate stratification, and uses literature on Swedish research policy history to contextualize the statistics. Highlighting the opportunities as well as constraints of the data, the article argues that there is great merit in combining statistics with a qualitative analysis when studying the structural characteristics of national higher education systems. Not least the article shows that it is an over-simplification to describe the Swedish system as binary; the stratification is more complex. On basis of the analysis, the article also argues that while global trends certainly influence national developments, higher education systems have country-specific features that may enrich the understanding of how systems evolve and therefore should be analyzed as part of a broader study of the increasingly globalized academic system.
    Date
    22. 3.2013 19:43:01
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.3, S.574-586
  4. Liu, B.: Web data mining : exploring hyperlinks, contents, and usage data (2011) 0.02
    0.020093452 = product of:
      0.060280353 = sum of:
        0.03355781 = weight(_text_:applications in 354) [ClassicSimilarity], result of:
          0.03355781 = score(doc=354,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.19456528 = fieldWeight in 354, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03125 = fieldNorm(doc=354)
        0.010370681 = weight(_text_:of in 354) [ClassicSimilarity], result of:
          0.010370681 = score(doc=354,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.16928169 = fieldWeight in 354, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=354)
        0.016351866 = weight(_text_:systems in 354) [ClassicSimilarity], result of:
          0.016351866 = score(doc=354,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1358164 = fieldWeight in 354, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=354)
      0.33333334 = coord(3/9)
    
    Abstract
    Web mining aims to discover useful information and knowledge from the Web hyperlink structure, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an application of traditional data mining due to the semistructured and unstructured nature of the Web data and its heterogeneity. It has also developed many of its own algorithms and techniques. Liu has written a comprehensive text on Web data mining. Key topics of structure mining, content mining, and usage mining are covered both in breadth and in depth. His book brings together all the essential concepts and algorithms from related areas such as data mining, machine learning, and text processing to form an authoritative and coherent text. The book offers a rich blend of theory and practice, addressing seminal research ideas, as well as examining the technology from a practical point of view. It is suitable for students, researchers and practitioners interested in Web mining both as a learning text and a reference book. Lecturers can readily use it for classes on data mining, Web mining, and Web search. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.
    Series
    Data-centric systems and applications
  5. Leydesdorff, L.; Persson, O.: Mapping the geography of science : distribution patterns and networks of relations among cities and institutes (2010) 0.01
    0.013763658 = product of:
      0.06193646 = sum of:
        0.021062955 = weight(_text_:of in 3704) [ClassicSimilarity], result of:
          0.021062955 = score(doc=3704,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34381276 = fieldWeight in 3704, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3704)
        0.040873505 = weight(_text_:software in 3704) [ClassicSimilarity], result of:
          0.040873505 = score(doc=3704,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.2629875 = fieldWeight in 3704, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=3704)
      0.22222222 = coord(2/9)
    
    Abstract
    Using Google Earth, Google Maps, and/or network visualization programs such as Pajek, one can overlay the network of relations among addresses in scientific publications onto the geographic map. The authors discuss the pros and cons of various options, and provide software (freeware) for bridging existing gaps between the Science Citation Indices (Thomson Reuters) and Scopus (Elsevier), on the one hand, and these various visualization tools on the other. At the level of city names, the global map can be drawn reliably on the basis of the available address information. At the level of the names of organizations and institutes, there are problems of unification both in the ISI databases and with Scopus. Pajek enables a combination of visualization and statistical analysis, whereas the Google Maps and its derivatives provide superior tools on the Internet.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.8, S.1622-1634
  6. Saggi, M.K.; Jain, S.: ¬A survey towards an integration of big data analytics to big insights for value-creation (2018) 0.01
    0.013395603 = product of:
      0.06028021 = sum of:
        0.041947264 = weight(_text_:applications in 5053) [ClassicSimilarity], result of:
          0.041947264 = score(doc=5053,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 5053, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5053)
        0.018332949 = weight(_text_:of in 5053) [ClassicSimilarity], result of:
          0.018332949 = score(doc=5053,freq=24.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2992506 = fieldWeight in 5053, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5053)
      0.22222222 = coord(2/9)
    
    Abstract
    Big Data Analytics (BDA) is increasingly becoming a trending practice that generates an enormous amount of data and provides a new opportunity that is helpful in relevant decision-making. The developments in Big Data Analytics provide a new paradigm and solutions for big data sources, storage, and advanced analytics. The BDA provide a nuanced view of big data development, and insights on how it can truly create value for firm and customer. This article presents a comprehensive, well-informed examination, and realistic analysis of deploying big data analytics successfully in companies. It provides an overview of the architecture of BDA including six components, namely: (i) data generation, (ii) data acquisition, (iii) data storage, (iv) advanced data analytics, (v) data visualization, and (vi) decision-making for value-creation. In this paper, seven V's characteristics of BDA namely Volume, Velocity, Variety, Valence, Veracity, Variability, and Value are explored. The various big data analytics tools, techniques and technologies have been described. Furthermore, it presents a methodical analysis for the usage of Big Data Analytics in various applications such as agriculture, healthcare, cyber security, and smart city. This paper also highlights the previous research, challenges, current status, and future directions of big data analytics for various application platforms. This overview highlights three issues, namely (i) concepts, characteristics and processing paradigms of Big Data Analytics; (ii) the state-of-the-art framework for decision-making in BDA for companies to insight value-creation; and (iii) the current challenges of Big Data Analytics as well as possible future directions.
  7. Tonkin, E.L.; Tourte, G.J.L.: Working with text. tools, techniques and approaches for text mining (2016) 0.01
    0.0126480125 = product of:
      0.056916054 = sum of:
        0.041947264 = weight(_text_:applications in 4019) [ClassicSimilarity], result of:
          0.041947264 = score(doc=4019,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 4019, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4019)
        0.014968789 = weight(_text_:of in 4019) [ClassicSimilarity], result of:
          0.014968789 = score(doc=4019,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 4019, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4019)
      0.22222222 = coord(2/9)
    
    Abstract
    What is text mining, and how can it be used? What relevance do these methods have to everyday work in information science and the digital humanities? How does one develop competences in text mining? Working with Text provides a series of cross-disciplinary perspectives on text mining and its applications. As text mining raises legal and ethical issues, the legal background of text mining and the responsibilities of the engineer are discussed in this book. Chapters provide an introduction to the use of the popular GATE text mining package with data drawn from social media, the use of text mining to support semantic search, the development of an authority system to support content tagging, and recent techniques in automatic language evaluation. Focused studies describe text mining on historical texts, automated indexing using constrained vocabularies, and the use of natural language processing to explore the climate science literature. Interviews are included that offer a glimpse into the real-life experience of working within commercial and academic text mining.
  8. Kraker, P.; Kittel, C,; Enkhbayar, A.: Open Knowledge Maps : creating a visual interface to the world's scientific knowledge based on natural language processing (2016) 0.01
    0.0122387 = product of:
      0.055074148 = sum of:
        0.014200641 = weight(_text_:of in 3205) [ClassicSimilarity], result of:
          0.014200641 = score(doc=3205,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 3205, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3205)
        0.040873505 = weight(_text_:software in 3205) [ClassicSimilarity], result of:
          0.040873505 = score(doc=3205,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.2629875 = fieldWeight in 3205, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=3205)
      0.22222222 = coord(2/9)
    
    Abstract
    The goal of Open Knowledge Maps is to create a visual interface to the world's scientific knowledge. The base for this visual interface consists of so-called knowledge maps, which enable the exploration of existing knowledge and the discovery of new knowledge. Our open source knowledge mapping software applies a mixture of summarization techniques and similarity measures on article metadata, which are iteratively chained together. After processing, the representation is saved in a database for use in a web visualization. In the future, we want to create a space for collective knowledge mapping that brings together individuals and communities involved in exploration and discovery. We want to enable people to guide each other in their discovery by collaboratively annotating and modifying the automatically created maps.
  9. Li, D.; Tang, J.; Ding, Y.; Shuai, X.; Chambers, T.; Sun, G.; Luo, Z.; Zhang, J.: Topic-level opinion influence model (TOIM) : an investigation using tencent microblogging (2015) 0.01
    0.011673733 = product of:
      0.052531797 = sum of:
        0.041947264 = weight(_text_:applications in 2345) [ClassicSimilarity], result of:
          0.041947264 = score(doc=2345,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 2345, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2345)
        0.010584532 = weight(_text_:of in 2345) [ClassicSimilarity], result of:
          0.010584532 = score(doc=2345,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17277241 = fieldWeight in 2345, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2345)
      0.22222222 = coord(2/9)
    
    Abstract
    Text mining has been widely used in multiple types of user-generated data to infer user opinion, but its application to microblogging is difficult because text messages are short and noisy, providing limited information about user opinion. Given that microblogging users communicate with each other to form a social network, we hypothesize that user opinion is influenced by its neighbors in the network. In this paper, we infer user opinion on a topic by combining two factors: the user's historical opinion about relevant topics and opinion influence from his/her neighbors. We thus build a topic-level opinion influence model (TOIM) by integrating both topic factor and opinion influence factor into a unified probabilistic model. We evaluate our model in one of the largest microblogging sites in China, Tencent Weibo, and the experiments show that TOIM outperforms baseline methods in opinion inference accuracy. Moreover, incorporating indirect influence further improves inference recall and f1-measure. Finally, we demonstrate some useful applications of TOIM in analyzing users' behaviors in Tencent Weibo.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.12, S.2657-2673
  10. Sun, X.; Lin, H.: Topical community detection from mining user tagging behavior and interest (2013) 0.01
    0.010530886 = product of:
      0.047388986 = sum of:
        0.012701439 = weight(_text_:of in 605) [ClassicSimilarity], result of:
          0.012701439 = score(doc=605,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732689 = fieldWeight in 605, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=605)
        0.034687545 = weight(_text_:systems in 605) [ClassicSimilarity], result of:
          0.034687545 = score(doc=605,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 605, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=605)
      0.22222222 = coord(2/9)
    
    Abstract
    With the development of Web2.0, social tagging systems in which users can freely choose tags to annotate resources according to their interests have attracted much attention. In particular, literature on the emergence of collective intelligence in social tagging systems has increased. In this article, we propose a probabilistic generative model to detect latent topical communities among users. Social tags and resource contents are leveraged to model user interest in two similar and correlated ways. Our primary goal is to capture user tagging behavior and interest and discover the emergent topical community structure. The communities should be groups of users with frequent social interactions as well as similar topical interests, which would have important research implications for personalized information services. Experimental results on two real social tagging data sets with different genres have shown that the proposed generative model more accurately models user interest and detects high-quality and meaningful topical communities.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.2, S.321-333
  11. Ayadi, H.; Torjmen-Khemakhem, M.; Daoud, M.; Huang, J.X.; Jemaa, M.B.: Mining correlations between medically dependent features and image retrieval models for query classification (2017) 0.01
    0.008070363 = product of:
      0.036316633 = sum of:
        0.015876798 = weight(_text_:of in 3607) [ClassicSimilarity], result of:
          0.015876798 = score(doc=3607,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25915858 = fieldWeight in 3607, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3607)
        0.020439833 = weight(_text_:systems in 3607) [ClassicSimilarity], result of:
          0.020439833 = score(doc=3607,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 3607, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3607)
      0.22222222 = coord(2/9)
    
    Abstract
    The abundance of medical resources has encouraged the development of systems that allow for efficient searches of information in large medical image data sets. State-of-the-art image retrieval models are classified into three categories: content-based (visual) models, textual models, and combined models. Content-based models use visual features to answer image queries, textual image retrieval models use word matching to answer textual queries, and combined image retrieval models, use both textual and visual features to answer queries. Nevertheless, most of previous works in this field have used the same image retrieval model independently of the query type. In this article, we define a list of generic and specific medical query features and exploit them in an association rule mining technique to discover correlations between query features and image retrieval models. Based on these rules, we propose to use an associative classifier (NaiveClass) to find the best suitable retrieval model given a new textual query. We also propose a second associative classifier (SmartClass) to select the most appropriate default class for the query. Experiments are performed on Medical ImageCLEF queries from 2008 to 2012 to evaluate the impact of the proposed query features on the classification performance. The results show that combining our proposed specific and generic query features is effective in query classification.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.5, S.1323-1334
  12. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.01
    0.0070228237 = product of:
      0.031602707 = sum of:
        0.018332949 = weight(_text_:of in 1605) [ClassicSimilarity], result of:
          0.018332949 = score(doc=1605,freq=24.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2992506 = fieldWeight in 1605, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1605)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.026539518 = score(doc=1605,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Numerous studies have explored the possibility of uncovering information from web search queries but few have examined the factors that affect web query data sources. We conducted a study that investigated this issue by comparing Google Trends and Baidu Index. Data from these two services are based on queries entered by users into Google and Baidu, two of the largest search engines in the world. We first compared the features and functions of the two services based on documents and extensive testing. We then carried out an empirical study that collected query volume data from the two sources. We found that data from both sources could be used to predict the quality of Chinese universities and companies. Despite the differences between the two services in terms of technology, such as differing methods of language processing, the search volume data from the two were highly correlated and combining the two data sources did not improve the predictive power of the data. However, there was a major difference between the two in terms of data availability. Baidu Index was able to provide more search volume data than Google Trends did. Our analysis showed that the disadvantage of Google Trends in this regard was due to Google's smaller user base in China. The implication of this finding goes beyond China. Google's user bases in many countries are smaller than that in China, so the search volume data related to those countries could result in the same issue as that related to China.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
  13. Loonus, Y.: Einsatzbereiche der KI und ihre Relevanz für Information Professionals (2017) 0.00
    0.0045415005 = product of:
      0.040873505 = sum of:
        0.040873505 = weight(_text_:software in 5668) [ClassicSimilarity], result of:
          0.040873505 = score(doc=5668,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.2629875 = fieldWeight in 5668, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=5668)
      0.11111111 = coord(1/9)
    
    Abstract
    Es liegt in der Natur des Menschen, Erfahrungen und Ideen in Wort und Schrift mit anderen teilen zu wollen. So produzieren wir jeden Tag gigantische Mengen an Texten, die in digitaler Form geteilt und abgelegt werden. The Radicati Group schätzt, dass 2017 täglich 269 Milliarden E-Mails versendet und empfangen werden. Hinzu kommen größtenteils unstrukturierte Daten wie Soziale Medien, Presse, Websites und firmeninterne Systeme, beispielsweise in Form von CRM-Software oder PDF-Dokumenten. Der weltweite Bestand an unstrukturierten Daten wächst so rasant, dass es kaum möglich ist, seinen Umfang zu quantifizieren. Der Versuch, eine belastbare Zahl zu recherchieren, führt unweigerlich zu diversen Artikeln, die den Anteil unstrukturierter Texte am gesamten Datenbestand auf 80% schätzen. Auch wenn nicht mehr einwandfrei nachvollziehbar ist, woher diese Zahl stammt, kann bei kritischer Reflexion unseres Tagesablaufs kaum bezweifelt werden, dass diese Daten von großer wirtschaftlicher Relevanz sind.
  14. Kong, S.; Ye, F.; Feng, L.; Zhao, Z.: Towards the prediction problems of bursting hashtags on Twitter (2015) 0.00
    0.002851792 = product of:
      0.025666127 = sum of:
        0.025666127 = weight(_text_:of in 2338) [ClassicSimilarity], result of:
          0.025666127 = score(doc=2338,freq=24.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.41895083 = fieldWeight in 2338, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2338)
      0.11111111 = coord(1/9)
    
    Abstract
    Hundreds of thousands of hashtags are generated every day on Twitter. Only a few will burst and become trending topics. In this article, we provide the definition of a bursting hashtag and conduct a systematic study of a series of challenging prediction problems that span the entire life cycles of bursting hashtags. Around the problem of "how to build a system to predict bursting hashtags," we explore different types of features and present machine learning solutions. On real data sets from Twitter, experiments are conducted to evaluate the effectiveness of the proposed solutions and the contributions of features.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.12, S.2566-2579
  15. Biskri, I.; Rompré, L.: Using association rules for query reformulation (2012) 0.00
    0.0026402464 = product of:
      0.023762217 = sum of:
        0.023762217 = weight(_text_:of in 92) [ClassicSimilarity], result of:
          0.023762217 = score(doc=92,freq=28.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.38787308 = fieldWeight in 92, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=92)
      0.11111111 = coord(1/9)
    
    Abstract
    In this paper the authors will present research on the combination of two methods of data mining: text classification and maximal association rules. Text classification has been the focus of interest of many researchers for a long time. However, the results take the form of lists of words (classes) that people often do not know what to do with. The use of maximal association rules induced a number of advantages: (1) the detection of dependencies and correlations between the relevant units of information (words) of different classes, (2) the extraction of hidden knowledge, often relevant, from a large volume of data. The authors will show how this combination can improve the process of information retrieval.
  16. O'Brien, H.L.; Lebow, M.: Mixed-methods approach to measuring user experience in online news interactions (2013) 0.00
    0.0023521183 = product of:
      0.021169065 = sum of:
        0.021169065 = weight(_text_:of in 1001) [ClassicSimilarity], result of:
          0.021169065 = score(doc=1001,freq=32.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34554482 = fieldWeight in 1001, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1001)
      0.11111111 = coord(1/9)
    
    Abstract
    When it comes to evaluating online information experiences, what metrics matter? We conducted a study in which 30 people browsed and selected content within an online news website. Data collected included psychometric scales (User Engagement, Cognitive Absorption, System Usability Scales), self-reported interest in news content, and performance metrics (i.e., reading time, browsing time, total time, number of pages visited, and use of recommended links); a subset of the participants had their physiological responses recorded during the interaction (i.e., heart rate, electrodermal activity, electrocmytogram). Findings demonstrated the concurrent validity of the psychometric scales and interest ratings and revealed that increased time on tasks, number of pages visited, and use of recommended links were not necessarily indicative of greater self-reported engagement, cognitive absorption, or perceived usability. Positive ratings of news content were associated with lower physiological activity. The implications of this research are twofold. First, we propose that user experience is a useful framework for studying online information interactions and will result in a broader conceptualization of information interaction and its evaluation. Second, we advocate a mixed-methods approach to measurement that employs a suite of metrics capable of capturing the pragmatic (e.g., usability) and hedonic (e.g., fun, engagement) aspects of information interactions. We underscore the importance of using multiple measures in information research, because our results emphasize that performance and physiological data must be interpreted in the context of users' subjective experiences.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.8, S.1543-1556
  17. Maaten, L. van den: Accelerating t-SNE using Tree-Based Algorithms (2014) 0.00
    0.0023284785 = product of:
      0.020956306 = sum of:
        0.020956306 = weight(_text_:of in 3886) [ClassicSimilarity], result of:
          0.020956306 = score(doc=3886,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34207192 = fieldWeight in 3886, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3886)
      0.11111111 = coord(1/9)
    
    Abstract
    The paper investigates the acceleration of t-SNE-an embedding technique that is commonly used for the visualization of high-dimensional data in scatter plots-using two tree-based algorithms. In particular, the paper develops variants of the Barnes-Hut algorithm and of the dual-tree algorithm that approximate the gradient used for learning t-SNE embeddings in O(N*logN). Our experiments show that the resulting algorithms substantially accelerate t-SNE, and that they make it possible to learn embeddings of data sets with millions of objects. Somewhat counterintuitively, the Barnes-Hut variant of t-SNE appears to outperform the dual-tree variant.
    Source
    Journal of machine learning research. 15(2014), S.3221-3245
  18. Mohr, J.W.; Bogdanov, P.: Topic models : what they are and why they matter (2013) 0.00
    0.0022314154 = product of:
      0.020082738 = sum of:
        0.020082738 = weight(_text_:of in 1142) [ClassicSimilarity], result of:
          0.020082738 = score(doc=1142,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 1142, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1142)
      0.11111111 = coord(1/9)
    
    Abstract
    We provide a brief, non-technical introduction to the text mining methodology known as "topic modeling." We summarize the theory and background of the method and discuss what kinds of things are found by topic models. Using a text corpus comprised of the eight articles from the special issue of Poetics on the subject of topic models, we run a topic model on these articles, both as a way to introduce the methodology and also to help summarize some of the ways in which social and cultural scientists are using topic models. We review some of the critiques and debates over the use of the method and finally, we link these developments back to some of the original innovations in the field of content analysis that were pioneered by Harold D. Lasswell and colleagues during and just after World War II.
  19. Bella, A. La; Fronzetti Colladon, A.; Battistoni, E.; Castellan, S.; Francucci, M.: Assessing perceived organizational leadership styles through twitter text mining (2018) 0.00
    0.0022314154 = product of:
      0.020082738 = sum of:
        0.020082738 = weight(_text_:of in 2400) [ClassicSimilarity], result of:
          0.020082738 = score(doc=2400,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 2400, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2400)
      0.11111111 = coord(1/9)
    
    Abstract
    We propose a text classification tool based on support vector machines for the assessment of organizational leadership styles, as appearing to Twitter users. We collected Twitter data over 51 days, related to the first 30 Italian organizations in the 2015 ranking of Forbes Global 2000-out of which we selected the five with the most relevant volumes of tweets. We analyzed the communication of the company leaders, together with the dialogue among the stakeholders of each company, to understand the association with perceived leadership styles and dimensions. To assess leadership profiles, we referred to the 10-factor model developed by Barchiesi and La Bella in 2007. We maintain the distinctiveness of the approach we propose, as it allows a rapid assessment of the perceived leadership capabilities of an enterprise, as they emerge from its social media interactions. It can also be used to show how companies respond and manage their communication when specific events take place, and to assess their stakeholder's reactions.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.1, S.21-31
  20. Wongthontham, P.; Abu-Salih, B.: Ontology-based approach for semantic data extraction from social big data : state-of-the-art and research directions (2018) 0.00
    0.0022314154 = product of:
      0.020082738 = sum of:
        0.020082738 = weight(_text_:of in 4097) [ClassicSimilarity], result of:
          0.020082738 = score(doc=4097,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 4097, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4097)
      0.11111111 = coord(1/9)
    
    Abstract
    A challenge of managing and extracting useful knowledge from social media data sources has attracted much attention from academic and industry. To address this challenge, semantic analysis of textual data is focused in this paper. We propose an ontology-based approach to extract semantics of textual data and define the domain of data. In other words, we semantically analyse the social data at two levels i.e. the entity level and the domain level. We have chosen Twitter as a social channel challenge for a purpose of concept proof. Domain knowledge is captured in ontologies which are then used to enrich the semantics of tweets provided with specific semantic conceptual representation of entities that appear in the tweets. Case studies are used to demonstrate this approach. We experiment and evaluate our proposed approach with a public dataset collected from Twitter and from the politics domain. The ontology-based approach leverages entity extraction and concept mappings in terms of quantity and accuracy of concept identification.

Languages

  • e 47
  • d 2
  • More… Less…

Types

  • a 47
  • el 8
  • m 2
  • s 1
  • More… Less…