Search (233 results, page 1 of 12)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Lin, W.-Y.C.: ¬The concept and applications of faceted classifications (2006) 0.05
    0.046183556 = product of:
      0.13855067 = sum of:
        0.09491582 = weight(_text_:applications in 5083) [ClassicSimilarity], result of:
          0.09491582 = score(doc=5083,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.5503137 = fieldWeight in 5083, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=5083)
        0.022403233 = weight(_text_:of in 5083) [ClassicSimilarity], result of:
          0.022403233 = score(doc=5083,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.36569026 = fieldWeight in 5083, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=5083)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 5083) [ClassicSimilarity], result of:
              0.042463228 = score(doc=5083,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 5083, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5083)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    The concept of faceted classification has its long history and importance in the human civilization. Recently, more and more consumer Web sites adopt the idea of facet analysis to organize and display their products or services. The aim of this article is to review the origin and develpment of faceted classification, as well as its concepts, essence, advantage and limitation. Further, the applications of faceted classification in various domians have been explored.
    Date
    27. 5.2007 22:19:35
    Source
    Journal of educational media and library sciences. 47(2006) no.2, S.153-171
  2. Giunchiglia, F.; Zaihrayeu, I.; Farazi, F.: Converting classifications into OWL ontologies (2009) 0.04
    0.035136953 = product of:
      0.10541086 = sum of:
        0.050336715 = weight(_text_:applications in 4690) [ClassicSimilarity], result of:
          0.050336715 = score(doc=4690,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 4690, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=4690)
        0.014200641 = weight(_text_:of in 4690) [ClassicSimilarity], result of:
          0.014200641 = score(doc=4690,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 4690, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4690)
        0.040873505 = weight(_text_:software in 4690) [ClassicSimilarity], result of:
          0.040873505 = score(doc=4690,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.2629875 = fieldWeight in 4690, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=4690)
      0.33333334 = coord(3/9)
    
    Abstract
    Classification schemes, such as the DMoZ web directory, provide a convenient and intuitive way for humans to access classified contents. While being easy to be dealt with for humans, classification schemes remain hard to be reasoned about by automated software agents. Among other things, this hardness is conditioned by the ambiguous na- ture of the natural language used to describe classification categories. In this paper we describe how classification schemes can be converted into OWL ontologies, thus enabling reasoning on them by Semantic Web applications. The proposed solution is based on a two phase approach in which category names are first encoded in a concept language and then, together with the structure of the classification scheme, are converted into an OWL ontology. We demonstrate the practical applicability of our approach by showing how the results of reasoning on these OWL ontologies can help improve the organization and use of web directories.
  3. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.03
    0.031102246 = product of:
      0.093306735 = sum of:
        0.041947264 = weight(_text_:applications in 2874) [ClassicSimilarity], result of:
          0.041947264 = score(doc=2874,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 2874, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.022453185 = weight(_text_:of in 2874) [ClassicSimilarity], result of:
          0.022453185 = score(doc=2874,freq=36.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.36650562 = fieldWeight in 2874, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.02890629 = weight(_text_:systems in 2874) [ClassicSimilarity], result of:
          0.02890629 = score(doc=2874,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 2874, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose - The aim of this article is to estimate the impact of faceted classification and the faceted analytical method on the development of various information retrieval tools over the latter part of the twentieth and early twenty-first centuries. Design/methodology/approach - The article presents an examination of various subject access tools intended for retrieval of both print and digital materials to determine whether they exhibit features of faceted systems. Some attention is paid to use of the faceted approach as a means of structuring information on commercial web sites. The secondary and research literature is also surveyed for commentary on and evaluation of facet analysis as a basis for the building of vocabulary and conceptual tools. Findings - The study finds that faceted systems are now very common, with a major increase in their use over the last 15 years. Most LIS subject indexing tools (classifications, subject heading lists and thesauri) now demonstrate features of facet analysis to a greater or lesser degree. A faceted approach is frequently taken to the presentation of product information on commercial web sites, and there is an independent strand of theory and documentation related to this application. There is some significant research on semi-automatic indexing and retrieval (query expansion and query formulation) using facet analytical techniques. Originality/value - This article provides an overview of an important conceptual approach to information retrieval, and compares different understandings and applications of this methodology.
  4. Connaway, L.S.; Sievert, M.C.: Comparison of three classification systems for information on health insurance (1996) 0.03
    0.028138978 = product of:
      0.08441693 = sum of:
        0.016935252 = weight(_text_:of in 7242) [ClassicSimilarity], result of:
          0.016935252 = score(doc=7242,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27643585 = fieldWeight in 7242, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=7242)
        0.046250064 = weight(_text_:systems in 7242) [ClassicSimilarity], result of:
          0.046250064 = score(doc=7242,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.38414678 = fieldWeight in 7242, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=7242)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 7242) [ClassicSimilarity], result of:
              0.042463228 = score(doc=7242,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 7242, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7242)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Reports results of a comparative study of 3 classification schemes: LCC, DDC and NLM Classification to determine their effectiveness in classifying materials on health insurance. Examined 2 hypotheses: that there would be no differences in the scatter of the 3 classification schemes; and that there would be overlap between all 3 schemes but no difference in the classes into which the subject was placed. There was subject scatter in all 3 classification schemes and litlle overlap between the 3 systems
    Date
    22. 4.1997 21:10:19
  5. Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification" (2010) 0.03
    0.025069844 = product of:
      0.07520953 = sum of:
        0.016802425 = weight(_text_:of in 2945) [ClassicSimilarity], result of:
          0.016802425 = score(doc=2945,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2742677 = fieldWeight in 2945, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2945)
        0.042483397 = weight(_text_:systems in 2945) [ClassicSimilarity], result of:
          0.042483397 = score(doc=2945,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.35286134 = fieldWeight in 2945, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=2945)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 2945) [ClassicSimilarity], result of:
              0.031847417 = score(doc=2945,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 2945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2945)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Argues that Beghtol's (2003) use of the terms "naive classification" and "professional classification" is valid because they are nominal definitions and that the distinction between these two types of classification points up the need for researchers in knowledge organization to broaden their scope beyond traditional classification systems intended for information retrieval. Argues that work by Beghtol (2003), Kwasnik (1999) and Bailey (1994) offer direction for the development of a classification of classifications based on the pragmatic dimensions of extant classification systems. Bezugnahme auf: Beghtol, C.: Naïve classification systems and the global information society. In: Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine. Würzburg: Ergon Verlag 2004. S.19-22. (Advances in knowledge organization; vol.9)
  6. Classification research for knowledge representation and organization : Proc. of the 5th Int. Study Conf. on Classification Research, Toronto, Canada, 24.-28.6.1991 (1992) 0.02
    0.024568737 = product of:
      0.07370621 = sum of:
        0.020822227 = weight(_text_:of in 2072) [ClassicSimilarity], result of:
          0.020822227 = score(doc=2072,freq=86.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.33988333 = fieldWeight in 2072, product of:
              9.273619 = tf(freq=86.0), with freq of:
                86.0 = termFreq=86.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2072)
        0.03244723 = weight(_text_:systems in 2072) [ClassicSimilarity], result of:
          0.03244723 = score(doc=2072,freq=14.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2695023 = fieldWeight in 2072, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2072)
        0.020436753 = weight(_text_:software in 2072) [ClassicSimilarity], result of:
          0.020436753 = score(doc=2072,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.13149375 = fieldWeight in 2072, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2072)
      0.33333334 = coord(3/9)
    
    Abstract
    This volume deals with both theoretical and empirical research in classification and encompasses universal classification systems, special classification systems, thesauri and the place of classification in a broad spectrum of document and information systems. Papers fall into one or three major areas as follows: 1) general principles and policies 2) structure and logic in classification; and empirical investigation; classification in the design of various types of document/information systems. The papers originate from the ISCCR '91 conference and have been selected according to the following criteria: relevance to the conference theme; importance of the topic in the representation and organization of knowledge; quality; and originality in terms of potential contribution to research and new knowledge.
    Content
    Enthält die Beiträge: SVENONIUS, E.: Classification: prospects, problems, and possibilities; BEALL, J.: Editing the Dewey Decimal Classification online: the evolution of the DDC database; BEGHTOL, C.: Toward a theory of fiction analysis for information storage and retrieval; CRAVEN, T.C.: Concept relation structures and their graphic display; FUGMANN, R.: Illusory goals in information science research; GILCHRIST, A.: UDC: the 1990's and beyond; GREEN, R.: The expression of syntagmatic relationships in indexing: are frame-based index languages the answer?; HUMPHREY, S.M.: Use and management of classification systems for knowledge-based indexing; MIKSA, F.L.: The concept of the universe of knowledge and the purpose of LIS classification; SCOTT, M. u. A.F. FONSECA: Methodology for functional appraisal of records and creation of a functional thesaurus; ALBRECHTSEN, H.: PRESS: a thesaurus-based information system for software reuse; AMAESHI, B.: A preliminary AAT compatible African art thesaurus; CHATTERJEE, A.: Structures of Indian classification systems of the pre-Ranganathan era and their impact on the Colon Classification; COCHRANE, P.A.: Indexing and searching thesauri, the Janus or Proteus of information retrieval; CRAVEN, T.C.: A general versus a special algorithm in the graphic display of thesauri; DAHLBERG, I.: The basis of a new universal classification system seen from a philosophy of science point of view: DRABENSTOTT, K.M., RIESTER, L.C. u. B.A.DEDE: Shelflisting using expert systems; FIDEL, R.: Thesaurus requirements for an intermediary expert system; GREEN, R.: Insights into classification from the cognitive sciences: ramifications for index languages; GROLIER, E. de: Towards a syndetic information retrieval system; GUENTHER, R.: The USMARC format for classification data: development and implementation; HOWARTH, L.C.: Factors influencing policies for the adoption and integration of revisions to classification schedules; HUDON, M.: Term definitions in subject thesauri: the Canadian literacy thesaurus experience; HUSAIN, S.: Notational techniques for the accomodation of subjects in Colon Classification 7th edition: theoretical possibility vis-à-vis practical need; KWASNIK, B.H. u. C. JORGERSEN: The exploration by means of repertory grids of semantic differences among names of official documents; MICCO, M.: Suggestions for automating the Library of Congress Classification schedules; PERREAULT, J.M.: An essay on the prehistory of general categories (II): G.W. Leibniz, Conrad Gesner; REES-POTTER, L.K.: How well do thesauri serve the social sciences?; REVIE, C.W. u. G. SMART: The construction and the use of faceted classification schema in technical domains; ROCKMORE, M.: Structuring a flexible faceted thsaurus record for corporate information retrieval; ROULIN, C.: Sub-thesauri as part of a metathesaurus; SMITH, L.C.: UNISIST revisited: compatibility in the context of collaboratories; STILES, W.G.: Notes concerning the use chain indexing as a possible means of simulating the inductive leap within artificial intelligence; SVENONIUS, E., LIU, S. u. B. SUBRAHMANYAM: Automation in chain indexing; TURNER, J.: Structure in data in the Stockshot database at the National Film Board of Canada; VIZINE-GOETZ, D.: The Dewey Decimal Classification as an online classification tool; WILLIAMSON, N.J.: Restructuring UDC: problems and possibilies; WILSON, A.: The hierarchy of belief: ideological tendentiousness in universal classification; WILSON, B.F.: An evaluation of the systematic botany schedule of the Universal Decimal Classification (English full edition, 1979); ZENG, L.: Research and development of classification and thesauri in China; CONFERENCE SUMMARY AND CONCLUSIONS
    Footnote
    Rez. in: International classification 19(1992) no.4, S.228-229 (B.C. Vickery); Journal of classification 11(1994) no.2, S.255-256 (W. Gödert)
    LCSH
    Knowledge, Theory of / Congresses
    Subject
    Knowledge, Theory of / Congresses
  7. Koshman, S.: Categorization and classification revisited : a review of concept in library science and cognitive psychology (1993) 0.02
    0.022717217 = product of:
      0.10222748 = sum of:
        0.08389453 = weight(_text_:applications in 8349) [ClassicSimilarity], result of:
          0.08389453 = score(doc=8349,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.4864132 = fieldWeight in 8349, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.078125 = fieldNorm(doc=8349)
        0.018332949 = weight(_text_:of in 8349) [ClassicSimilarity], result of:
          0.018332949 = score(doc=8349,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2992506 = fieldWeight in 8349, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=8349)
      0.22222222 = coord(2/9)
    
    Abstract
    Reviews the basic concepts associated with categorization and classification in order to examine the cognitive psychology and library science perspectives toward these processes, to discover if a theoretical affinity exists and to discuss potential applications of cognitive categorization theory to the field of library science
  8. Howarth, L.C.; Jansen, E.H.: Towards a typology of warrant for 21st century knowledge organization systems (2014) 0.02
    0.022471227 = product of:
      0.06741368 = sum of:
        0.016802425 = weight(_text_:of in 1425) [ClassicSimilarity], result of:
          0.016802425 = score(doc=1425,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2742677 = fieldWeight in 1425, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1425)
        0.034687545 = weight(_text_:systems in 1425) [ClassicSimilarity], result of:
          0.034687545 = score(doc=1425,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 1425, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=1425)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 1425) [ClassicSimilarity], result of:
              0.031847417 = score(doc=1425,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 1425, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1425)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    This paper returns to Beghtol's (1986) insightful typology of warrant to consider an empirical example of a traditional top-down hierarchical classification system as it continues to evolve in the early 21st century. Our examination considers there may be multiple warrants identified among the processes of design and the relationships to users of the National Occupational Classification (NOC), the standard occupational classification system published in Canada. We argue that this shift in semantic warrant signals a transition for traditional knowledge organization systems, and that warrant continues to be a relevant analytical concept and organizing principle, both within and beyond the domain of bibliographic control.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  9. Winske, E.: ¬The development and structure of an urban, regional, and local documents classification scheme (1996) 0.02
    0.02226542 = product of:
      0.06679626 = sum of:
        0.01960283 = weight(_text_:of in 7241) [ClassicSimilarity], result of:
          0.01960283 = score(doc=7241,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.31997898 = fieldWeight in 7241, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7241)
        0.028615767 = weight(_text_:systems in 7241) [ClassicSimilarity], result of:
          0.028615767 = score(doc=7241,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 7241, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7241)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 7241) [ClassicSimilarity], result of:
              0.037155323 = score(doc=7241,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 7241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7241)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Discusses the reasons for the decision, taken at Florida International University Library to develop an in house classification system for their local documents collections. Reviews the structures of existing classification systems, noting their strengths and weaknesses in relation to the development of an in house system and describes the 5 components of the new system; geography, subject categories, extensions for population group and/or function, extensions for type of publication, and title/series designator
    Footnote
    Paper presented at conference on 'Local documents, a new classification scheme' at the Research Caucus of the Florida Library Association Annual Conference, Fort Lauderdale, Florida 22 Apr 95
    Source
    Journal of educational media and library sciences. 34(1996) no.1, S.19-34
  10. Beghtol, C.: Naïve classification systems and the global information society (2004) 0.02
    0.021802736 = product of:
      0.06540821 = sum of:
        0.016735615 = weight(_text_:of in 3483) [ClassicSimilarity], result of:
          0.016735615 = score(doc=3483,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.27317715 = fieldWeight in 3483, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3483)
        0.03540283 = weight(_text_:systems in 3483) [ClassicSimilarity], result of:
          0.03540283 = score(doc=3483,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.29405114 = fieldWeight in 3483, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3483)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 3483) [ClassicSimilarity], result of:
              0.026539518 = score(doc=3483,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 3483, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3483)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Classification is an activity that transcends time and space and that bridges the divisions between different languages and cultures, including the divisions between academic disciplines. Classificatory activity, however, serves different purposes in different situations. Classifications for infonnation retrieval can be called "professional" classifications and classifications in other fields can be called "naïve" classifications because they are developed by people who have no particular interest in classificatory issues. The general purpose of naïve classification systems is to discover new knowledge. In contrast, the general purpose of information retrieval classifications is to classify pre-existing knowledge. Different classificatory purposes may thus inform systems that are intended to span the cultural specifics of the globalized information society. This paper builds an previous research into the purposes and characteristics of naïve classifications. It describes some of the relationships between the purpose and context of a naive classification, the units of analysis used in it, and the theory that the context and the units of analysis imply.
    Footnote
    Vgl.: Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification". In: Knowledge organization. 37(2010) no.2, S.111-120.
    Pages
    S.19-22
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  11. Dousa, T.M.; Ibekwe-SanJuan, F.: Epistemological and methodological eclecticism in the construction of knowledge organization systems (KOSs) : the case of analytico-synthetic KOSs (2014) 0.02
    0.021332208 = product of:
      0.06399662 = sum of:
        0.021820573 = weight(_text_:of in 1417) [ClassicSimilarity], result of:
          0.021820573 = score(doc=1417,freq=34.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.35617945 = fieldWeight in 1417, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1417)
        0.02890629 = weight(_text_:systems in 1417) [ClassicSimilarity], result of:
          0.02890629 = score(doc=1417,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 1417, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1417)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 1417) [ClassicSimilarity], result of:
              0.026539518 = score(doc=1417,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 1417, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1417)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    In recent years, Hjørland has developed a typology of basic epistemological approaches to KO that identifies four basic positions - empiricism, rationalism, historicism/hermeneutics, and pragmatism -with which to characterize the epistemological bases and methodological orientation of KOSs. Although scholars of KO have noted that the design of a single KOS may incorporate epistemological-methodological features from more than one of these approaches, studies of concrete examples of epistemologico-methodological eclecticism have been rare. In this paper, we consider the phenomenon of epistemologico-methodological eclecticism in one theoretically significant family of KOSs - namely analytico-synthetic, or faceted, KOSs - by examining two cases - Julius Otto Kaiser's method of Systematic Indexing (SI) and Brian Vickery's method of facet analysis (FA) for document classification. We show that both of these systems combined classical features of rationalism with elements of empiricism and pragmatism and argue that such eclecticism is the norm, rather than the exception, for such KOSs in general.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  12. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2017) 0.02
    0.020670593 = product of:
      0.062011775 = sum of:
        0.014818345 = weight(_text_:of in 3494) [ClassicSimilarity], result of:
          0.014818345 = score(doc=3494,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24188137 = fieldWeight in 3494, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3494)
        0.028615767 = weight(_text_:systems in 3494) [ClassicSimilarity], result of:
          0.028615767 = score(doc=3494,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 3494, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3494)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 3494) [ClassicSimilarity], result of:
              0.037155323 = score(doc=3494,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 3494, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3494)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Pages
    S.22-36
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  13. Slavic, A.: On the nature and typology of documentary classifications and their use in a networked environment (2007) 0.02
    0.020537008 = product of:
      0.061611023 = sum of:
        0.010999769 = weight(_text_:of in 780) [ClassicSimilarity], result of:
          0.010999769 = score(doc=780,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17955035 = fieldWeight in 780, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
        0.034687545 = weight(_text_:systems in 780) [ClassicSimilarity], result of:
          0.034687545 = score(doc=780,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 780, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 780) [ClassicSimilarity], result of:
              0.031847417 = score(doc=780,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 780, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=780)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Networked orientated standards for vocabulary publishing and exchange and proposals for terminological services and terminology registries will improve sharing and use of all knowledge organization systems in the networked information environment. This means that documentary classifications may also become more applicable for use outside their original domain of application. The paper summarises some characteristics common to documentary classifications and explains some terminological, functional and implementation aspects. The original purpose behind each classification scheme determines the functions that the vocabulary is designed to facilitate. These functions influence the structure, semantics and syntax, scheme coverage and format in which classification data are published and made available. The author suggests that attention should be paid to the differences between documentary classifications as these may determine their suitability for a certain purpose and may impose different requirements with respect to their use online. As we speak, many classifications are being created for knowledge organization and it may be important to promote expertise from the bibliographic domain with respect to building and using classification systems.
    Date
    22.12.2007 17:22:31
  14. Midorikawa, N.: ¬A discussion of the concepts of facets from the viewpoint of the structures of classification systems (1997) 0.02
    0.020408506 = product of:
      0.09183828 = sum of:
        0.02694382 = weight(_text_:of in 1806) [ClassicSimilarity], result of:
          0.02694382 = score(doc=1806,freq=36.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.43980673 = fieldWeight in 1806, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1806)
        0.06489446 = weight(_text_:systems in 1806) [ClassicSimilarity], result of:
          0.06489446 = score(doc=1806,freq=14.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.5390046 = fieldWeight in 1806, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=1806)
      0.22222222 = coord(2/9)
    
    Abstract
    2 concepts of facets have been used in studies of classification systems: one for systems which take hierarchical structure and the other for systems which take multidimensional structure. Both correspond to 'principles of division'. The concepts of facets in multidimensional structure systems is used for addressing a subject from many aspects so should equate to the broadest principle of division in order to grasp a multiplicity of aspects. The concept of facets used in hierarchical systems addresses only the significance of a coherent set of items. This concept is not distinguished from the principle of division and there is no purpose in introducing a concept of facets into hierarchical systems in addition to the principle of division
    Source
    Annals of Japan Society of Library Science. 43(1997) no.3, S.117-128
  15. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.02
    0.019878766 = product of:
      0.059636295 = sum of:
        0.025926704 = weight(_text_:of in 1418) [ClassicSimilarity], result of:
          0.025926704 = score(doc=1418,freq=48.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.42320424 = fieldWeight in 1418, product of:
              6.928203 = tf(freq=48.0), with freq of:
                48.0 = termFreq=48.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.020439833 = weight(_text_:systems in 1418) [ClassicSimilarity], result of:
          0.020439833 = score(doc=1418,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 1418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.026539518 = score(doc=1418,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  16. Foskett, D.J.: Systems theory and its relevance to documentary classification (2017) 0.02
    0.019680055 = product of:
      0.088560246 = sum of:
        0.024573447 = weight(_text_:of in 3617) [ClassicSimilarity], result of:
          0.024573447 = score(doc=3617,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.40111488 = fieldWeight in 3617, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3617)
        0.0639868 = weight(_text_:systems in 3617) [ClassicSimilarity], result of:
          0.0639868 = score(doc=3617,freq=10.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.5314657 = fieldWeight in 3617, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3617)
      0.22222222 = coord(2/9)
    
    Abstract
    In view of the impact of systems theory for the construction of classification systems the two major contributions of Dewey are summarized as well as the new methods of facet analysis and organization brought into classification by Ranganathan. With the latter's "canonical" solution for the contents and arrangement of main classes, however, contemporary philosophical thought regarding the organization of knowledge seems to have been neglected. The work of the Classification Research Group and elsewhere considering integrative level theory will improve the science of classification systems construction. Besides this the influence from psychology and linguistics on the recognition of relationships between concepts is outlined as well as some practical implications of the systems approach on classification. (I.C.)
  17. Curras, E.: Ranganathan's classification theories under the systems science postulates (1992) 0.02
    0.018828548 = product of:
      0.084728464 = sum of:
        0.02808394 = weight(_text_:of in 6993) [ClassicSimilarity], result of:
          0.02808394 = score(doc=6993,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.458417 = fieldWeight in 6993, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=6993)
        0.05664453 = weight(_text_:systems in 6993) [ClassicSimilarity], result of:
          0.05664453 = score(doc=6993,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.4704818 = fieldWeight in 6993, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=6993)
      0.22222222 = coord(2/9)
    
    Abstract
    Describes the basic ideas concerning system science and discusses S.R. Ranganathan's ideas about concepts of 'universe of ideas', 'universe of science', 'universe of knowledge' and 'universe of classification'. Examines the principles, canons and postulates underlying Colon Classification. Discusses the structure of Colon Classification. Points out that the ideas of Ranganathan conform to the concept 'unity of science' and concludes that the principles of systems science or systems thinking are helpful in understanding the theory of classification formulated by Ranganathan
    Source
    Journal of library and information science. 17(1992) no.1, S.45-65
  18. Denton, W.: Putting facets on the Web : an annotated bibliography (2003) 0.02
    0.018478356 = product of:
      0.05543507 = sum of:
        0.010910287 = weight(_text_:of in 2467) [ClassicSimilarity], result of:
          0.010910287 = score(doc=2467,freq=34.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17808972 = fieldWeight in 2467, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
        0.020439833 = weight(_text_:systems in 2467) [ClassicSimilarity], result of:
          0.020439833 = score(doc=2467,freq=8.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 2467, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
        0.024084946 = weight(_text_:software in 2467) [ClassicSimilarity], result of:
          0.024084946 = score(doc=2467,freq=4.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.15496688 = fieldWeight in 2467, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
      0.33333334 = coord(3/9)
    
    Abstract
    This is a classified, annotated bibliography about how to design faceted classification systems and make them usable on the World Wide Web. It is the first of three works I will be doing. The second, based on the material here and elsewhere, will discuss how to actually make the faceted system and put it online. The third will be a report of how I did just that, what worked, what didn't, and what I learned. Almost every article or book listed here begins with an explanation of what a faceted classification system is, so I won't (but see Steckel in Background below if you don't already know). They all agree that faceted systems are very appropriate for the web. Even pre-web articles (such as Duncan's in Background, below) assert that hypertext and facets will go together well. Combined, it is possible to take a set of documents and classify them or apply subject headings to describe what they are about, then build a navigational structure so that any user, no matter how he or she approaches the material, no matter what his or her goals, can move and search in a way that makes sense to them, but still get to the same useful results as someone else following a different path to the same goal. There is no one way that everyone will always use when looking for information. The more flexible the organization of the information, the more accommodating it is. Facets are more flexible for hypertext browsing than any enumerative or hierarchical system.
    Consider movie listings in newspapers. Most Canadian newspapers list movie showtimes in two large blocks, for the two major theatre chains. The listings are ordered by region (in large cities), then theatre, then movie, and finally by showtime. Anyone wondering where and when a particular movie is playing must scan the complete listings. Determining what movies are playing in the next half hour is very difficult. When movie listings went onto the web, most sites used a simple faceted organization, always with movie name and theatre, and perhaps with region or neighbourhood (thankfully, theatre chains were left out). They make it easy to pick a theatre and see what movies are playing there, or to pick a movie and see what theatres are showing it. To complete the system, the sites should allow users to browse by neighbourhood and showtime, and to order the results in any way they desired. Thus could people easily find answers to such questions as, "Where is the new James Bond movie playing?" "What's showing at the Roxy tonight?" "I'm going to be out in in Little Finland this afternoon with three hours to kill starting at 2 ... is anything interesting playing?" A hypertext, faceted classification system makes more useful information more easily available to the user. Reading the books and articles below in chronological order will show a certain progression: suggestions that faceting and hypertext might work well, confidence that facets would work well if only someone would make such a system, and finally the beginning of serious work on actually designing, building, and testing faceted web sites. There is a solid basis of how to make faceted classifications (see Vickery in Recommended), but their application online is just starting. Work on XFML (see Van Dijck's work in Recommended) the Exchangeable Faceted Metadata Language, will make this easier. If it follows previous patterns, parts of the Internet community will embrace the idea and make open source software available for others to reuse. It will be particularly beneficial if professionals in both information studies and computer science can work together to build working systems, standards, and code. Each can benefit from the other's expertise in what can be a very complicated and technical area. One particularly nice thing about this area of research is that people interested in combining facets and the web often have web sites where they post their writings.
    This bibliography is not meant to be exhaustive, but unfortunately it is not as complete as I wanted. Some books and articles are not be included, but they may be used in my future work. (These include two books and one article by B.C. Vickery: Faceted Classification Schemes (New Brunswick, NJ: Rutgers, 1966), Classification and Indexing in Science, 3rd ed. (London: Butterworths, 1975), and "Knowledge Representation: A Brief Review" (Journal of Documentation 42 no. 3 (September 1986): 145-159; and A.C. Foskett's "The Future of Faceted Classification" in The Future of Classification, edited by Rita Marcella and Arthur Maltby (Aldershot, England: Gower, 2000): 69-80). Nevertheless, I hope this bibliography will be useful for those both new to or familiar with faceted hypertext systems. Some very basic resources are listed, as well as some very advanced ones. Some example web sites are mentioned, but there is no detailed technical discussion of any software. The user interface to any web site is extremely important, and this is briefly mentioned in two or three places (for example the discussion of lawforwa.org (see Example Web Sites)). The larger question of how to display information graphically and with hypertext is outside the scope of this bibliography. There are five sections: Recommended, Background, Not Relevant, Example Web Sites, and Mailing Lists. Background material is either introductory, advanced, or of peripheral interest, and can be read after the Recommended resources if the reader wants to know more. The Not Relevant category contains articles that may appear in bibliographies but are not relevant for my purposes.
  19. Mirorikawa, N.: Structures of classification systems : hierarchical and multidimensional (1996) 0.02
    0.018421704 = product of:
      0.08289766 = sum of:
        0.025666127 = weight(_text_:of in 6583) [ClassicSimilarity], result of:
          0.025666127 = score(doc=6583,freq=24.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.41895083 = fieldWeight in 6583, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6583)
        0.057231534 = weight(_text_:systems in 6583) [ClassicSimilarity], result of:
          0.057231534 = score(doc=6583,freq=8.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.47535738 = fieldWeight in 6583, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6583)
      0.22222222 = coord(2/9)
    
    Abstract
    Considers classification systems from a structural point of view. Distinguishes between 2 kinds of methods of categorization of classification systems: the first categorized by structure, either hierarchical or multidimensional; and the second by style of expression, either enumerative or sythetic. Identifies 4 leading classification systems according to their structures: DDC, LCC, UDC and Colon Classification. Focuses on DDC referring to 2 interpretatives of its structure, one of which is hierarchical and the other is partially multidimensional. Also relates this to the matter of interpretation of the notation '0', interpreted in one instance as 'generalities', and in another as 'coordination sign'
    Source
    Annals of Japan Society of Library Science. 42(1996) no.2, S.99-110
  20. Kleineberg, M.: Integrative levels (2017) 0.02
    0.018256897 = product of:
      0.08215603 = sum of:
        0.05872617 = weight(_text_:applications in 3840) [ClassicSimilarity], result of:
          0.05872617 = score(doc=3840,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 3840, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3840)
        0.023429861 = weight(_text_:of in 3840) [ClassicSimilarity], result of:
          0.023429861 = score(doc=3840,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.38244802 = fieldWeight in 3840, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3840)
      0.22222222 = coord(2/9)
    
    Abstract
    This article provides a historical overview and conceptual clarification of the idea of integrative levels as an organizing principle. It will be demonstrated that this concept has found different articulations (e.g., levels of integration, levels of organization, levels of complexity, levels of granularity, nested hierarchy, specification hierarchy, hierarchical integration, progressive integration, holarchy, superformation, self-organization cycles) and widespread applications based on various, often unrelated theoretical and disciplinary backgrounds. In order to determine its role in the field of knowledge organization, some common misconceptions and major criticisms will be reconsidered in light of a broader multidisciplinary context. In particular, it will be shown how this organizing principle has been fruitfully applied to human-related research areas such as psychology, social sciences, or humanities in terms of integrative levels of knowing.

Authors

Languages

Types

  • a 206
  • m 20
  • el 10
  • s 4
  • b 2
  • More… Less…