Search (104 results, page 1 of 6)

  • × theme_ss:"Universale Facettenklassifikationen"
  1. Lin, W.-Y.C.: ¬The concept and applications of faceted classifications (2006) 0.05
    0.046183556 = product of:
      0.13855067 = sum of:
        0.09491582 = weight(_text_:applications in 5083) [ClassicSimilarity], result of:
          0.09491582 = score(doc=5083,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.5503137 = fieldWeight in 5083, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=5083)
        0.022403233 = weight(_text_:of in 5083) [ClassicSimilarity], result of:
          0.022403233 = score(doc=5083,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.36569026 = fieldWeight in 5083, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=5083)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 5083) [ClassicSimilarity], result of:
              0.042463228 = score(doc=5083,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 5083, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5083)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    The concept of faceted classification has its long history and importance in the human civilization. Recently, more and more consumer Web sites adopt the idea of facet analysis to organize and display their products or services. The aim of this article is to review the origin and develpment of faceted classification, as well as its concepts, essence, advantage and limitation. Further, the applications of faceted classification in various domians have been explored.
    Date
    27. 5.2007 22:19:35
    Source
    Journal of educational media and library sciences. 47(2006) no.2, S.153-171
  2. Dahlberg, I.: Towards a future for knowledge organization (2006) 0.04
    0.037264794 = product of:
      0.11179438 = sum of:
        0.06711562 = weight(_text_:applications in 1476) [ClassicSimilarity], result of:
          0.06711562 = score(doc=1476,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.38913056 = fieldWeight in 1476, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=1476)
        0.011975031 = weight(_text_:of in 1476) [ClassicSimilarity], result of:
          0.011975031 = score(doc=1476,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.19546966 = fieldWeight in 1476, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=1476)
        0.03270373 = weight(_text_:systems in 1476) [ClassicSimilarity], result of:
          0.03270373 = score(doc=1476,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2716328 = fieldWeight in 1476, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=1476)
      0.33333334 = coord(3/9)
    
    Abstract
    Discusses the origin and evolution of the Information Coding Classification (ICC); its theoretical basis, and structure and advantageous attributes for organizing knowledge. Pleads that the considerable work already done on the system should be taken up and developed by interested research groups through collaborative effort. Concludes with some thoughts on the future of knowledge organization for information retrieval and other applications
    Source
    Knowledge organization, information systems and other essays: Professor A. Neelameghan Festschrift. Eds.: K.S. Raghavan u. K.N. Prasad
  3. Barité, M.; Rauch, M.: Systematifier : in rescue of a useful tool in domain analysis (2017) 0.03
    0.03189435 = product of:
      0.09568304 = sum of:
        0.041947264 = weight(_text_:applications in 4142) [ClassicSimilarity], result of:
          0.041947264 = score(doc=4142,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 4142, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4142)
        0.018332949 = weight(_text_:of in 4142) [ClassicSimilarity], result of:
          0.018332949 = score(doc=4142,freq=24.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2992506 = fieldWeight in 4142, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4142)
        0.03540283 = weight(_text_:systems in 4142) [ClassicSimilarity], result of:
          0.03540283 = score(doc=4142,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.29405114 = fieldWeight in 4142, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4142)
      0.33333334 = coord(3/9)
    
    Abstract
    Literature on the systematifier is remarkably limited in knowledge organization. Dahlberg created the procedure in the seventies as a guide for the construction of classification systems and showed its applicability in systems she developed. According to her initial conception, all disciplines should be structured in the following sequence: Foundations and theories-Subjects of study-Methods-Influences-Applications-Environment. The nature of the procedure is determined in this study and the concept is situated in relation with the domain analysis methodologies. As a tool for the organization of the map of a certain domain, it is associated with a rationalist perspective and the top-down design of systems construction. It would require a reassessment of its scope in order to ensure its applicability to multidisciplinary and interdisciplinary domains. Among other conclusions, it is highlighted that the greatest potential of the systematifier is given by the fact that-as a methodological device-it can act as: i)an analyzer of a subject area; ii)an organizer of its main terms; and, iii)an identifier of links, bridges and intersection points with other knowledge areas.
  4. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.03
    0.031102246 = product of:
      0.093306735 = sum of:
        0.041947264 = weight(_text_:applications in 2874) [ClassicSimilarity], result of:
          0.041947264 = score(doc=2874,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 2874, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.022453185 = weight(_text_:of in 2874) [ClassicSimilarity], result of:
          0.022453185 = score(doc=2874,freq=36.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.36650562 = fieldWeight in 2874, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.02890629 = weight(_text_:systems in 2874) [ClassicSimilarity], result of:
          0.02890629 = score(doc=2874,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 2874, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose - The aim of this article is to estimate the impact of faceted classification and the faceted analytical method on the development of various information retrieval tools over the latter part of the twentieth and early twenty-first centuries. Design/methodology/approach - The article presents an examination of various subject access tools intended for retrieval of both print and digital materials to determine whether they exhibit features of faceted systems. Some attention is paid to use of the faceted approach as a means of structuring information on commercial web sites. The secondary and research literature is also surveyed for commentary on and evaluation of facet analysis as a basis for the building of vocabulary and conceptual tools. Findings - The study finds that faceted systems are now very common, with a major increase in their use over the last 15 years. Most LIS subject indexing tools (classifications, subject heading lists and thesauri) now demonstrate features of facet analysis to a greater or lesser degree. A faceted approach is frequently taken to the presentation of product information on commercial web sites, and there is an independent strand of theory and documentation related to this application. There is some significant research on semi-automatic indexing and retrieval (query expansion and query formulation) using facet analytical techniques. Originality/value - This article provides an overview of an important conceptual approach to information retrieval, and compares different understandings and applications of this methodology.
  5. Perugini, S.: Supporting multiple paths to objects in information hierarchies : faceted classification, faceted search, and symbolic links (2010) 0.03
    0.028237667 = product of:
      0.084713 = sum of:
        0.05872617 = weight(_text_:applications in 4227) [ClassicSimilarity], result of:
          0.05872617 = score(doc=4227,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 4227, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4227)
        0.0074091726 = weight(_text_:of in 4227) [ClassicSimilarity], result of:
          0.0074091726 = score(doc=4227,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.120940685 = fieldWeight in 4227, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4227)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 4227) [ClassicSimilarity], result of:
              0.037155323 = score(doc=4227,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 4227, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4227)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    We present three fundamental, interrelated approaches to support multiple access paths to each terminal object in information hierarchies: faceted classification, faceted search, and web directories with embedded symbolic links. This survey aims to demonstrate how each approach supports users who seek information from multiple perspectives. We achieve this by exploring each approach, the relationships between these approaches, including tradeoffs, and how they can be used in concert, while focusing on a core set of hypermedia elements common to all. This approach provides a foundation from which to study, understand, and synthesize applications which employ these techniques. This survey does not aim to be comprehensive, but rather focuses on thematic issues.
    Source
    Information processing and management. 46(2010) no.1, S.22-43
  6. Broughton, V.: ¬A faceted classification as the basis of a faceted terminology : conversion of a classified structure to thesaurus format in the Bliss Bibliographic Classification, 2nd Edition (2008) 0.03
    0.028151155 = product of:
      0.08445346 = sum of:
        0.019052157 = weight(_text_:of in 1857) [ClassicSimilarity], result of:
          0.019052157 = score(doc=1857,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.3109903 = fieldWeight in 1857, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1857)
        0.0245278 = weight(_text_:systems in 1857) [ClassicSimilarity], result of:
          0.0245278 = score(doc=1857,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 1857, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=1857)
        0.040873505 = weight(_text_:software in 1857) [ClassicSimilarity], result of:
          0.040873505 = score(doc=1857,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.2629875 = fieldWeight in 1857, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=1857)
      0.33333334 = coord(3/9)
    
    Abstract
    Facet analysis is an established methodology for building classifications and subject indexing systems, but has been less rigorously applied to thesauri. The process of creating a compatible thesaurus from the schedules of the Bliss Bibliographic Classification 2nd edition highlights the ways in which the conceptual relationships in a subject field are handled in the two types of retrieval languages. An underlying uniformity of theory is established, and the way in which software can manage the relationships is discussed. The manner of displaying verbal expressions of concepts (vocabulary control) is also considered, but is found to be less well controlled in the classification than in the thesaurus. Nevertheless, there is good reason to think that facet analysis provides a sound basis for structuring a variety of knowledge organization tools.
  7. Broughton, V.: Finding Bliss on the Web : some problems of representing faceted terminologies in digital environments 0.03
    0.027401244 = product of:
      0.08220373 = sum of:
        0.016802425 = weight(_text_:of in 3532) [ClassicSimilarity], result of:
          0.016802425 = score(doc=3532,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2742677 = fieldWeight in 3532, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3532)
        0.0245278 = weight(_text_:systems in 3532) [ClassicSimilarity], result of:
          0.0245278 = score(doc=3532,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2037246 = fieldWeight in 3532, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=3532)
        0.040873505 = weight(_text_:software in 3532) [ClassicSimilarity], result of:
          0.040873505 = score(doc=3532,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.2629875 = fieldWeight in 3532, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=3532)
      0.33333334 = coord(3/9)
    
    Abstract
    The Bliss Bibliographic Classification is the only example of a fully faceted general classification scheme in the Western world. Although it is the object of much interest as a model for other tools it suffers from the lack of a web presence, and remedying this is an immediate objective for its editors. Understanding how this might be done presents some challenges, as the scheme is semantically very rich and complex in the range and nature of the relationships it contains. The automatic management of these is already in place using local software, but exporting this to a common data format needs careful thought and planning. Various encoding schemes, both for traditional classifications, and for digital materials, represent variously: the concepts; their functional roles; and the relationships between them. Integrating these aspects in a coherent and interchangeable manner appears to be achievable, but the most appropriate format is as yet unclear.
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO conference, Rome, 23-26 February 2010, ed. Claudio Gnoli, Indeks, Frankfurt M
  8. Asundi, A.Y.: Domain specific categories and relations and their potential applications : a case study of two arrays of agriculture schedule of Colon Classification (2012) 0.02
    0.024055267 = product of:
      0.1082487 = sum of:
        0.08718575 = weight(_text_:applications in 843) [ClassicSimilarity], result of:
          0.08718575 = score(doc=843,freq=6.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.5054954 = fieldWeight in 843, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=843)
        0.021062955 = weight(_text_:of in 843) [ClassicSimilarity], result of:
          0.021062955 = score(doc=843,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34381276 = fieldWeight in 843, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=843)
      0.22222222 = coord(2/9)
    
    Abstract
    The categories/isolates are broadly conceived as common and special. The common categories are applicable to all the classes of subjects in a Classification system, whereas the specials are applicable within a domain or specified classes of a classification system. The CC has represented some unique special categories, especially in the Agriculture Subject schedule, and such a provision is not seen in any other classification system; not even in any other subject schedule of Colon Classification. These special categories are termed here as "Domain Specific Categories". The paper analyses the thematic relationships within and outside the subject schedule with potential applications in devising a scheme of metadata as demonstrated in a research study on Indian Medicinal Plants. The other potential applications of such thematic relationships are in the creation of semantic maps and in linking concepts from different domains of knowledge.
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
  9. Dousa, T.M.; Ibekwe-SanJuan, F.: Epistemological and methodological eclecticism in the construction of knowledge organization systems (KOSs) : the case of analytico-synthetic KOSs (2014) 0.02
    0.021332208 = product of:
      0.06399662 = sum of:
        0.021820573 = weight(_text_:of in 1417) [ClassicSimilarity], result of:
          0.021820573 = score(doc=1417,freq=34.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.35617945 = fieldWeight in 1417, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1417)
        0.02890629 = weight(_text_:systems in 1417) [ClassicSimilarity], result of:
          0.02890629 = score(doc=1417,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 1417, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1417)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 1417) [ClassicSimilarity], result of:
              0.026539518 = score(doc=1417,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 1417, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1417)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    In recent years, Hjørland has developed a typology of basic epistemological approaches to KO that identifies four basic positions - empiricism, rationalism, historicism/hermeneutics, and pragmatism -with which to characterize the epistemological bases and methodological orientation of KOSs. Although scholars of KO have noted that the design of a single KOS may incorporate epistemological-methodological features from more than one of these approaches, studies of concrete examples of epistemologico-methodological eclecticism have been rare. In this paper, we consider the phenomenon of epistemologico-methodological eclecticism in one theoretically significant family of KOSs - namely analytico-synthetic, or faceted, KOSs - by examining two cases - Julius Otto Kaiser's method of Systematic Indexing (SI) and Brian Vickery's method of facet analysis (FA) for document classification. We show that both of these systems combined classical features of rationalism with elements of empiricism and pragmatism and argue that such eclecticism is the norm, rather than the exception, for such KOSs in general.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  10. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.02
    0.019878766 = product of:
      0.059636295 = sum of:
        0.025926704 = weight(_text_:of in 1418) [ClassicSimilarity], result of:
          0.025926704 = score(doc=1418,freq=48.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.42320424 = fieldWeight in 1418, product of:
              6.928203 = tf(freq=48.0), with freq of:
                48.0 = termFreq=48.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.020439833 = weight(_text_:systems in 1418) [ClassicSimilarity], result of:
          0.020439833 = score(doc=1418,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 1418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.026539518 = score(doc=1418,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  11. Thomas, A.R.: Bliss Bibliographic Classification 2nd Edition : principles features and applications (1992) 0.02
    0.017083302 = product of:
      0.07687486 = sum of:
        0.05872617 = weight(_text_:applications in 541) [ClassicSimilarity], result of:
          0.05872617 = score(doc=541,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 541, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=541)
        0.018148692 = weight(_text_:of in 541) [ClassicSimilarity], result of:
          0.018148692 = score(doc=541,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.29624295 = fieldWeight in 541, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=541)
      0.22222222 = coord(2/9)
    
    Abstract
    Publication of the 2nd ed. of the Bliss Bibliographic Classification presents librarians with a fresh opportunity to reassess the nature and benefits of helpful order for their collections and records. Half the parts are now available, exhibiting major expansion, revision, and development of the scheme. The new edition is sponsored by the Bliss Classification Association which welcomes the views and inputs of American librarians. It has been applied to libraries and information centers and used in thesaurus construction. This edition provides intensive subject specifity through detailed term listings and full synthetic capability. The notation is designed to be as brief as possible for the detail attainable. The classification allows a large measure of flexibility in arrangement and syntax
  12. Facets: a fruitful notion in many domains : special issue on facet analysis (2008) 0.02
    0.01705714 = product of:
      0.051171415 = sum of:
        0.020973632 = weight(_text_:applications in 3262) [ClassicSimilarity], result of:
          0.020973632 = score(doc=3262,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.1216033 = fieldWeight in 3262, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3262)
        0.019977868 = weight(_text_:of in 3262) [ClassicSimilarity], result of:
          0.019977868 = score(doc=3262,freq=114.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32610077 = fieldWeight in 3262, product of:
              10.677078 = tf(freq=114.0), with freq of:
                114.0 = termFreq=114.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3262)
        0.010219917 = weight(_text_:systems in 3262) [ClassicSimilarity], result of:
          0.010219917 = score(doc=3262,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.08488525 = fieldWeight in 3262, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3262)
      0.33333334 = coord(3/9)
    
    Footnote
    Rez. in: KO 36(2009) no.1, S.62-63 (K. La Barre): "This special issue of Axiomathes presents an ambitious dual agenda. It attempts to highlight aspects of facet analysis (as used in LIS) that are shared by cognate approaches in philosophy, psychology, linguistics and computer science. Secondarily, the issue aims to attract others to the study and use of facet analysis. The authors represent a blend of lifetime involvement with facet analysis, such as Vickery, Broughton, Beghtol, and Dahlberg; those with well developed research agendas such as Tudhope, and Priss; and relative newcomers such as Gnoli, Cheti and Paradisi, and Slavic. Omissions are inescapable, but a more balanced issue would have resulted from inclusion of at least one researcher from the Indian school of facet theory. Another valuable addition might have been a reaction to the issue by one of the chief critics of facet analysis. Potentially useful, but absent, is a comprehensive bibliography of resources for those wishing to engage in further study, that now lie scattered throughout the issue. Several of the papers assume relative familiarity with facet analytical concepts and definitions, some of which are contested even within LIS. Gnoli's introduction (p. 127-130) traces the trajectory, extensions and new developments of this analytico- synthetic approach to subject access, while providing a laundry list of cognate approaches that are similar to facet analysis. This brief essay and the article by Priss (p. 243-255) directly addresses this first part of Gnoli's agenda. Priss provides detailed discussion of facet-like structures in computer science (p. 245- 246), and outlines the similarity between Formal Concept Analysis and facets. This comparison is equally fruitful for researchers in computer science and library and information science. By bridging into a discussion of visualization challenges for facet display, further research is also invited. Many of the remaining papers comprehensively detail the intellectual heritage of facet analysis (Beghtol; Broughton, p. 195-198; Dahlberg; Tudhope and Binding, p. 213-215; Vickery). Beghtol's (p. 131-144) examination of the origins of facet theory through the lens of the textbooks written by Ranganathan's mentor W.C.B. Sayers (1881-1960), Manual of Classification (1926, 1944, 1955) and a textbook written by Mills A Modern Outline of Classification (1964), serves to reveal the deep intellectual heritage of the changes in classification theory over time, as well as Ranganathan's own influence on and debt to Sayers.
    Several of the papers are clearly written as primers and neatly address the second agenda item: attracting others to the study and use of facet analysis. The most valuable papers are written in clear, approachable language. Vickery's paper (p. 145-160) is a clarion call for faceted classification and facet analysis. The heart of the paper is a primer for central concepts and techniques. Vickery explains the value of using faceted classification in document retrieval. Also provided are potential solutions to thorny interface and display issues with facets. Vickery looks to complementary themes in knowledge organization, such as thesauri and ontologies as potential areas for extending the facet concept. Broughton (p. 193-210) describes a rigorous approach to the application of facet analysis in the creation of a compatible thesaurus from the schedules of the 2nd edition of the Bliss Classification (BC2). This discussion of exemplary faceted thesauri, recent standards work, and difficulties encountered in the project will provide valuable guidance for future research in this area. Slavic (p. 257-271) provides a challenge to make faceted classification come 'alive' through promoting the use of machine-readable formats for use and exchange in applications such as Topic Maps and SKOS (Simple Knowledge Organization Systems), and as supported by the standard BS8723 (2005) Structured Vocabulary for Information Retrieval. She also urges designers of faceted classifications to get involved in standards work. Cheti and Paradisi (p. 223-241) outline a basic approach to converting an existing subject indexing tool, the Nuovo Soggetario, into a faceted thesaurus through the use of facet analysis. This discussion, well grounded in the canonical literature, may well serve as a primer for future efforts. Also useful for those who wish to construct faceted thesauri is the article by Tudhope and Binding (p. 211-222). This contains an outline of basic elements to be found in exemplar faceted thesauri, and a discussion of project FACET (Faceted Access to Cultural heritage Terminology) with algorithmically-based semantic query expansion in a dataset composed of items from the National Museum of Science and Industry indexed with AAT (Art and Architecture Thesaurus). This paper looks to the future hybridization of ontologies and facets through standards developments such as SKOS because of the "lightweight semantics" inherent in facets.
    Two of the papers revisit the interaction of facets with the theory of integrative levels, which posits that the organization of the natural world reflects increasingly interdependent complexity. This approach was tested as a basis for the creation of faceted classifications in the 1960s. These contemporary treatments of integrative levels are not discipline-driven as were the early approaches, but instead are ontological and phenomenological in focus. Dahlberg (p. 161-172) outlines the creation of the ICC (Information Coding System) and the application of the Systematifier in the generation of facets and the creation of a fully faceted classification. Gnoli (p. 177-192) proposes the use of fundamental categories as a way to redefine facets and fundamental categories in "more universal and level-independent ways" (p. 192). Given that Axiomathes has a stated focus on "contemporary issues in cognition and ontology" and the following thesis: "that real advances in contemporary science may depend upon a consideration of the origins and intellectual history of ideas at the forefront of current research," this venue seems well suited for the implementation of the stated agenda, to illustrate complementary approaches and to stimulate research. As situated, this special issue may well serve as a bridge to a more interdisciplinary dialogue about facet analysis than has previously been the case."
  13. Ranganathan, S.R.: ¬The Colon Classification (1965) 0.02
    0.016011083 = product of:
      0.07204988 = sum of:
        0.014818345 = weight(_text_:of in 3417) [ClassicSimilarity], result of:
          0.014818345 = score(doc=3417,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24188137 = fieldWeight in 3417, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.109375 = fieldNorm(doc=3417)
        0.057231534 = weight(_text_:systems in 3417) [ClassicSimilarity], result of:
          0.057231534 = score(doc=3417,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.47535738 = fieldWeight in 3417, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.109375 = fieldNorm(doc=3417)
      0.22222222 = coord(2/9)
    
    Series
    Rutgers series on systems for the intellectual organization of information;4
  14. Krishnamurthy, M.; Satija, M.P.; Martínez-Ávila, D.: Classification of classifications : species of library classifications (2024) 0.02
    0.01542827 = product of:
      0.069427215 = sum of:
        0.02694382 = weight(_text_:of in 1158) [ClassicSimilarity], result of:
          0.02694382 = score(doc=1158,freq=36.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.43980673 = fieldWeight in 1158, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1158)
        0.042483397 = weight(_text_:systems in 1158) [ClassicSimilarity], result of:
          0.042483397 = score(doc=1158,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.35286134 = fieldWeight in 1158, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=1158)
      0.22222222 = coord(2/9)
    
    Abstract
    Acknowledging the importance of classification not only for library and information science but also for the study and mapping of the world phenomena, in this paper we revisit and systematize the main types of classifications and focus on the species of classification mainly drawing on the work of S. R. Ranganathan. We trace the evolution of library classification systems by their structures and modes of design of various shades of classification systems and make a comparative study of enumerative and faceted species of library classifications. The value of this paper is to have a picture of the whole spectrum of existing classifications, which may serve for the study of future developments and constructions of new systems. This paper updates previous works by Comaromi and Ranganathan and is also theoretically inspired by them.
  15. Austin, D.: Differences between library classifications and machine-based subject retrieval systems : some inferences drawn from research in Britain, 1963-1973 (1979) 0.02
    0.015199359 = product of:
      0.06839711 = sum of:
        0.010584532 = weight(_text_:of in 2564) [ClassicSimilarity], result of:
          0.010584532 = score(doc=2564,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17277241 = fieldWeight in 2564, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=2564)
        0.05781258 = weight(_text_:systems in 2564) [ClassicSimilarity], result of:
          0.05781258 = score(doc=2564,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.48018348 = fieldWeight in 2564, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.078125 = fieldNorm(doc=2564)
      0.22222222 = coord(2/9)
    
    Source
    Ordering systems for global information networks. Proc. of the 3rd Int. Study Conf. on Classification Research, Bombay 1975. Ed. by A. Neelameghan
  16. Austin, D.: Basic concept classes and primitive relations (1982) 0.01
    0.013723786 = product of:
      0.061757036 = sum of:
        0.012701439 = weight(_text_:of in 6580) [ClassicSimilarity], result of:
          0.012701439 = score(doc=6580,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732689 = fieldWeight in 6580, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=6580)
        0.0490556 = weight(_text_:systems in 6580) [ClassicSimilarity], result of:
          0.0490556 = score(doc=6580,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.4074492 = fieldWeight in 6580, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.09375 = fieldNorm(doc=6580)
      0.22222222 = coord(2/9)
    
    Source
    Universal classification I: subject analysis and ordering systems. Proc. of the 4th Int. Study Conf. on Classification research, Augsburg, 28.6.-2.7.1982. Ed.: I. Dahlberg
  17. Beghtol, C.: From the universe of knowledge to the universe of concepts : the structural revolution in classification for information retrieval (2008) 0.01
    0.012716312 = product of:
      0.057223402 = sum of:
        0.021820573 = weight(_text_:of in 1856) [ClassicSimilarity], result of:
          0.021820573 = score(doc=1856,freq=34.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.35617945 = fieldWeight in 1856, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1856)
        0.03540283 = weight(_text_:systems in 1856) [ClassicSimilarity], result of:
          0.03540283 = score(doc=1856,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.29405114 = fieldWeight in 1856, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1856)
      0.22222222 = coord(2/9)
    
    Abstract
    During the twentieth century, bibliographic classification theory underwent a structural revolution. The first modern bibliographic classifications were top-down systems that started at the universe of knowledge and subdivided that universe downward to minute subclasses. After the invention of faceted classification by S.R. Ranganathan, the ideal was to build bottom-up classifications that started with the universe of concepts and built upward to larger and larger faceted classes. This ideal has not been achieved, and the two kinds of classification systems are not mutually exclusive. This paper examines the process by which this structural revolution was accomplished by looking at the spread of facet theory after 1924 when Ranganathan attended the School of Librarianship, London, through selected classification textbooks that were published after that date. To this end, the paper examines the role of W.C.B. Sayers as a teacher and author of three editions of The Manual of Classification for Librarians and Bibliographers. Sayers influenced both Ranganathan and the various members of the Classification Research Group (CRG) who were his students. Further, the paper contrasts the methods of evaluating classification systems that arose between Sayers's Canons of Classification in 1915- 1916 and J. Mills's A Modern Outline of Library Classification in 1960 in order to demonstrate the speed with which one kind of classificatory structure was overtaken by another.
  18. Madalli, D.P.; Prasad, A.R.D.: Analytico-synthetic approach for handling knowledge diversity in media content analysis (2011) 0.01
    0.012597208 = product of:
      0.056687433 = sum of:
        0.050336715 = weight(_text_:applications in 4827) [ClassicSimilarity], result of:
          0.050336715 = score(doc=4827,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 4827, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=4827)
        0.0063507194 = weight(_text_:of in 4827) [ClassicSimilarity], result of:
          0.0063507194 = score(doc=4827,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.103663445 = fieldWeight in 4827, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4827)
      0.22222222 = coord(2/9)
    
    Abstract
    Knowledge space is diverse and thus extremely complex. With increased means for online publishing and communication world communities are actively contributing content. This augments the need to find and access resources in different contexts and for different purposes. Owing to different socio-cultural backgrounds, purposes and applications, knowledge generated by people is marked by diversity. Hence, knowledge representation for building diversity-aware tools presents interesting research challenges. In this paper, we provide an analytico-synthetic approach for dealing with topical diversity following a faceted subject indexing method. Illustrations are used to demonstrate facet analysis and synthesis for use in annotations for Media Content Analysis within the European Commission (EC) funded 'Living Knowledge' project.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
  19. Dahlberg, I.: ¬A faceted classification of general concepts (2011) 0.01
    0.012571532 = product of:
      0.056571893 = sum of:
        0.021169065 = weight(_text_:of in 4824) [ClassicSimilarity], result of:
          0.021169065 = score(doc=4824,freq=32.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.34554482 = fieldWeight in 4824, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4824)
        0.03540283 = weight(_text_:systems in 4824) [ClassicSimilarity], result of:
          0.03540283 = score(doc=4824,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.29405114 = fieldWeight in 4824, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4824)
      0.22222222 = coord(2/9)
    
    Abstract
    General concepts are all those form-categorial concepts which - attached to a specific concept of a classification system or thesaurus - can help to widen, sometimes even in a syntactical sense, the understanding of a case. In some existing universal classification systems such concepts have been named "auxiliaries" or "common isolates" as in the Colon Classification (CC). However, by such auxiliaries, different kinds of such concepts are listed, e.g. concepts of space and time, concepts of races and languages and concepts of kinds of documents, next to them also concepts of kinds of general activities, properties, persons, and institutions. Such latter kinds form part of the nine aspects ruling the facets in the Information Coding Classification (ICC) through the principle of using a Systematiser for the subdivision of subject groups and fields. Based on this principle and using and extending existing systems of such concepts, e.g. which A. Diemer had presented to the German Thesaurus Committee as well as those found in the UDC, in CC and attached to the Subject Heading System of the German National Library, a faceted classification is proposed for critical assessment, necessary improvement and possible later use in classification systems and thesauri.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
  20. Giri, K.; Gokhale, P.: Developing a banking service ontology using Protégé, an open source software (2015) 0.01
    0.011643156 = product of:
      0.052394204 = sum of:
        0.018332949 = weight(_text_:of in 2793) [ClassicSimilarity], result of:
          0.018332949 = score(doc=2793,freq=24.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2992506 = fieldWeight in 2793, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2793)
        0.034061253 = weight(_text_:software in 2793) [ClassicSimilarity], result of:
          0.034061253 = score(doc=2793,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.21915624 = fieldWeight in 2793, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2793)
      0.22222222 = coord(2/9)
    
    Abstract
    Computers have transformed from single isolated devices to entry points into a worldwide network of information exchange. Consequently, support in the exchange of data, information, and knowledge is becoming the key issue in computer technology today. The increasing volume of data available on the Web makes information retrieval a tedious and difficult task. Researchers are now exploring the possibility of creating a semantic web, in which meaning is made explicit, allowing machines to process and integrate web resources intelligently. The vision of the semantic web introduces the next generation of the Web by establishing a layer of machine-understandable data. The success of the semantic web depends on the easy creation, integration and use of semantic data, which will depend on web ontology. The faceted approach towards analyzing and representing knowledge given by S R Ranganathan would be useful in this regard. Ontology development in different fields is one such area where this approach given by Ranganathan could be applied. This paper presents a case of developing ontology for the field of banking.
    Source
    Annals of library and information studies. 62(2015) no.4, S.281-285

Languages

  • e 101
  • d 2
  • chi 1
  • More… Less…

Types

  • a 86
  • el 10
  • m 10
  • s 4
  • b 2
  • More… Less…