Search (94 results, page 1 of 5)

  • × year_i:[2000 TO 2010}
  • × theme_ss:"Semantische Interoperabilität"
  1. Vetere, G.; Lenzerini, M.: Models for semantic interoperability in service-oriented architectures (2005) 0.31
    0.30909622 = product of:
      0.5563732 = sum of:
        0.07259351 = product of:
          0.21778052 = sum of:
            0.21778052 = weight(_text_:3a in 306) [ClassicSimilarity], result of:
              0.21778052 = score(doc=306,freq=2.0), product of:
                0.3321406 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03917671 = queryNorm
                0.65568775 = fieldWeight in 306, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=306)
          0.33333334 = coord(1/3)
        0.21778052 = weight(_text_:2f in 306) [ClassicSimilarity], result of:
          0.21778052 = score(doc=306,freq=2.0), product of:
            0.3321406 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03917671 = queryNorm
            0.65568775 = fieldWeight in 306, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0546875 = fieldNorm(doc=306)
        0.01960283 = weight(_text_:of in 306) [ClassicSimilarity], result of:
          0.01960283 = score(doc=306,freq=14.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.31997898 = fieldWeight in 306, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=306)
        0.028615767 = weight(_text_:systems in 306) [ClassicSimilarity], result of:
          0.028615767 = score(doc=306,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 306, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=306)
        0.21778052 = weight(_text_:2f in 306) [ClassicSimilarity], result of:
          0.21778052 = score(doc=306,freq=2.0), product of:
            0.3321406 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03917671 = queryNorm
            0.65568775 = fieldWeight in 306, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0546875 = fieldNorm(doc=306)
      0.5555556 = coord(5/9)
    
    Abstract
    Although service-oriented architectures go a long way toward providing interoperability in distributed, heterogeneous environments, managing semantic differences in such environments remains a challenge. We give an overview of the issue of semantic interoperability (integration), provide a semantic characterization of services, and discuss the role of ontologies. Then we analyze four basic models of semantic interoperability that differ in respect to their mapping between service descriptions and ontologies and in respect to where the evaluation of the integration logic is performed. We also provide some guidelines for selecting one of the possible interoperability models.
    Content
    Vgl.: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5386707&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5386707.
    Source
    IBM systems journal. 44(2005) no.4, S.887-903
  2. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.14
    0.1384162 = product of:
      0.24914916 = sum of:
        0.10067343 = weight(_text_:applications in 4820) [ClassicSimilarity], result of:
          0.10067343 = score(doc=4820,freq=8.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.5836958 = fieldWeight in 4820, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=4820)
        0.012701439 = weight(_text_:of in 4820) [ClassicSimilarity], result of:
          0.012701439 = score(doc=4820,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732689 = fieldWeight in 4820, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4820)
        0.0490556 = weight(_text_:systems in 4820) [ClassicSimilarity], result of:
          0.0490556 = score(doc=4820,freq=8.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.4074492 = fieldWeight in 4820, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=4820)
        0.070794985 = weight(_text_:software in 4820) [ClassicSimilarity], result of:
          0.070794985 = score(doc=4820,freq=6.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.4555077 = fieldWeight in 4820, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.046875 = fieldNorm(doc=4820)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
              0.031847417 = score(doc=4820,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 4820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4820)
          0.5 = coord(1/2)
      0.5555556 = coord(5/9)
    
    Abstract
    One of the major problems facing systems for Computer Aided Design (CAD), Architecture Engineering and Construction (AEC) and Geographic Information Systems (GIS) applications today is the lack of interoperability among the various systems. When integrating software applications, substantial di culties can arise in translating information from one application to the other. In this paper, we focus on semantic di culties that arise in software integration. Applications may use di erent terminologies to describe the same domain. Even when appli-cations use the same terminology, they often associate di erent semantics with the terms. This obstructs information exchange among applications. To cir-cumvent this obstacle, we need some way of explicitly specifying the semantics for each terminology in an unambiguous fashion. Ontologies can provide such specification. It will be the task of this paper to explain what ontologies are and how they can be used to facilitate interoperability between software systems used in computer aided design, architecture engineering and construction, and geographic information processing.
    Date
    3.12.2016 18:39:22
  3. Lauser, B.; Johannsen, G.; Caracciolo, C.; Hage, W.R. van; Keizer, J.; Mayr, P.: Comparing human and automatic thesaurus mapping approaches in the agricultural domain (2008) 0.05
    0.053759262 = product of:
      0.120958336 = sum of:
        0.059322387 = weight(_text_:applications in 2627) [ClassicSimilarity], result of:
          0.059322387 = score(doc=2627,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34394607 = fieldWeight in 2627, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2627)
        0.012963352 = weight(_text_:of in 2627) [ClassicSimilarity], result of:
          0.012963352 = score(doc=2627,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.21160212 = fieldWeight in 2627, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2627)
        0.03540283 = weight(_text_:systems in 2627) [ClassicSimilarity], result of:
          0.03540283 = score(doc=2627,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.29405114 = fieldWeight in 2627, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2627)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 2627) [ClassicSimilarity], result of:
              0.026539518 = score(doc=2627,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 2627, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2627)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    Knowledge organization systems (KOS), like thesauri and other controlled vocabularies, are used to provide subject access to information systems across the web. Due to the heterogeneity of these systems, mapping between vocabularies becomes crucial for retrieving relevant information. However, mapping thesauri is a laborious task, and thus big efforts are being made to automate the mapping process. This paper examines two mapping approaches involving the agricultural thesaurus AGROVOC, one machine-created and one human created. We are addressing the basic question "What are the pros and cons of human and automatic mapping and how can they complement each other?" By pointing out the difficulties in specific cases or groups of cases and grouping the sample into simple and difficult types of mappings, we show the limitations of current automatic methods and come up with some basic recommendations on what approach to use when.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  4. Panzer, M.; Zeng, M.L.: Modeling classification systems in SKOS : Some challenges and best-practice (2009) 0.04
    0.04161918 = product of:
      0.124857545 = sum of:
        0.05872617 = weight(_text_:applications in 3717) [ClassicSimilarity], result of:
          0.05872617 = score(doc=3717,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 3717, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3717)
        0.016567415 = weight(_text_:of in 3717) [ClassicSimilarity], result of:
          0.016567415 = score(doc=3717,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2704316 = fieldWeight in 3717, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3717)
        0.049563963 = weight(_text_:systems in 3717) [ClassicSimilarity], result of:
          0.049563963 = score(doc=3717,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.41167158 = fieldWeight in 3717, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3717)
      0.33333334 = coord(3/9)
    
    Abstract
    Representing classification systems on the web for publication and exchange continues to be a challenge within the SKOS framework. This paper focuses on the differences between classification schemes and other families of KOS (knowledge organization systems) that make it difficult to express classifications without sacrificing a large amount of their semantic richness. Issues resulting from the specific set of relationships between classes and topics that defines the basic nature of any classification system are discussed. Where possible, different solutions within the frameworks of SKOS and OWL are proposed and examined.
    Source
    Semantic Interoperability for Linked Data, proc. DC2009: International Conference on Dublin Core and Metadata Applications, Seoul, Korea, October 12-17, 2009
  5. Si, L.E.; O'Brien, A.; Probets, S.: Integration of distributed terminology resources to facilitate subject cross-browsing for library portal systems (2009) 0.04
    0.039644737 = product of:
      0.08920065 = sum of:
        0.012963352 = weight(_text_:of in 3628) [ClassicSimilarity], result of:
          0.012963352 = score(doc=3628,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.21160212 = fieldWeight in 3628, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3628)
        0.02890629 = weight(_text_:systems in 3628) [ClassicSimilarity], result of:
          0.02890629 = score(doc=3628,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 3628, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3628)
        0.034061253 = weight(_text_:software in 3628) [ClassicSimilarity], result of:
          0.034061253 = score(doc=3628,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.21915624 = fieldWeight in 3628, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3628)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 3628) [ClassicSimilarity], result of:
              0.026539518 = score(doc=3628,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 3628, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3628)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    Purpose: To develop a prototype middleware framework between different terminology resources in order to provide a subject cross-browsing service for library portal systems. Design/methodology/approach: Nine terminology experts were interviewed to collect appropriate knowledge to support the development of a theoretical framework for the research. Based on this, a simplified software-based prototype system was constructed incorporating the knowledge acquired. The prototype involved mappings between the computer science schedule of the Dewey Decimal Classification (which acted as a spine) and two controlled vocabularies UKAT and ACM Computing Classification. Subsequently, six further experts in the field were invited to evaluate the prototype system and provide feedback to improve the framework. Findings: The major findings showed that given the large variety of terminology resources distributed on the web, the proposed middleware service is essential to integrate technically and semantically the different terminology resources in order to facilitate subject cross-browsing. A set of recommendations are also made outlining the important approaches and features that support such a cross browsing middleware service.
    Content
    This paper is a pre-print version presented at the ISKO UK 2009 conference, 22-23 June, prior to peer review and editing. For published proceedings see special issue of Aslib Proceedings journal.
  6. Mayr, P.; Petras, V.: Building a Terminology Network for Search : the KoMoHe project (2008) 0.04
    0.03815403 = product of:
      0.11446208 = sum of:
        0.083051346 = weight(_text_:applications in 2618) [ClassicSimilarity], result of:
          0.083051346 = score(doc=2618,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.4815245 = fieldWeight in 2618, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2618)
        0.0128330635 = weight(_text_:of in 2618) [ClassicSimilarity], result of:
          0.0128330635 = score(doc=2618,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20947541 = fieldWeight in 2618, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2618)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 2618) [ClassicSimilarity], result of:
              0.037155323 = score(doc=2618,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 2618, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2618)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    The paper reports about results on the GESIS-IZ project "Competence Center Modeling and Treatment of Semantic Heterogeneity" (KoMoHe). KoMoHe supervised a terminology mapping effort, in which 'cross-concordances' between major controlled vocabularies were organized, created and managed. In this paper we describe the establishment and implementation of crossconcordances for search in a digital library (DL).
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  7. Dobrev, P.; Kalaydjiev, O.; Angelova, G.: From conceptual structures to semantic interoperability of content (2007) 0.03
    0.034492344 = product of:
      0.10347702 = sum of:
        0.0726548 = weight(_text_:applications in 4607) [ClassicSimilarity], result of:
          0.0726548 = score(doc=4607,freq=6.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.42124623 = fieldWeight in 4607, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4607)
        0.017552461 = weight(_text_:of in 4607) [ClassicSimilarity], result of:
          0.017552461 = score(doc=4607,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.28651062 = fieldWeight in 4607, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4607)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 4607) [ClassicSimilarity], result of:
              0.026539518 = score(doc=4607,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 4607, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4607)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Smart applications behave intelligently because they understand at least partially the context where they operate. To do this, they need not only a formal domain model but also formal descriptions of the data they process and their own operational behaviour. Interoperability of smart applications is based on formalised definitions of all their data and processes. This paper studies the semantic interoperability of data in the case of eLearning and describes an experiment and its assessment. New content is imported into a knowledge-based learning environment without real updates of the original domain model, which is encoded as a knowledge base of conceptual graphs. A component called mediator enables the import by assigning dummy metadata annotations for the imported items. However, some functionality of the original system is lost, when processing the imported content, due to the lack of proper metadata annotation which cannot be associated fully automatically. So the paper presents an interoperability scenario when appropriate content items are viewed from the perspective of the original world and can be (partially) reused there.
    Source
    Conceptual structures: knowledge architectures for smart applications: 15th International Conference on Conceptual Structures, ICCS 2007, Sheffield, UK, July 22 - 27, 2007 ; proceedings. Eds.: U. Priss u.a
  8. Levergood, B.; Farrenkopf, S.; Frasnelli, E.: ¬The specification of the language of the field and interoperability : cross-language access to catalogues and online libraries (CACAO) (2008) 0.03
    0.033270672 = product of:
      0.09981201 = sum of:
        0.07118686 = weight(_text_:applications in 2646) [ClassicSimilarity], result of:
          0.07118686 = score(doc=2646,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.41273528 = fieldWeight in 2646, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=2646)
        0.012701439 = weight(_text_:of in 2646) [ClassicSimilarity], result of:
          0.012701439 = score(doc=2646,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.20732689 = fieldWeight in 2646, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2646)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 2646) [ClassicSimilarity], result of:
              0.031847417 = score(doc=2646,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 2646, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2646)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    The CACAO Project (Cross-language Access to Catalogues and Online Libraries) has been designed to implement natural language processing and cross-language information retrieval techniques to provide cross-language access to information in libraries, a critical issue in the linguistically diverse European Union. This project report addresses two metadata-related challenges for the library community in this context: "false friends" (identical words having different meanings in different languages) and term ambiguity. The possible solutions involve enriching the metadata with attributes specifying language or the source authority file, or associating potential search terms to classes in a classification system. The European Library will evaluate an early implementation of this work in late 2008.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  9. Godby, C.J.; Smith, D.; Childress, E.: Encoding application profiles in a computational model of the crosswalk (2008) 0.03
    0.029186979 = product of:
      0.08756094 = sum of:
        0.059322387 = weight(_text_:applications in 2649) [ClassicSimilarity], result of:
          0.059322387 = score(doc=2649,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34394607 = fieldWeight in 2649, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2649)
        0.014968789 = weight(_text_:of in 2649) [ClassicSimilarity], result of:
          0.014968789 = score(doc=2649,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 2649, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2649)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 2649) [ClassicSimilarity], result of:
              0.026539518 = score(doc=2649,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 2649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2649)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    OCLC's Crosswalk Web Service (Godby, Smith and Childress, 2008) formalizes the notion of crosswalk, as defined in Gill,et al. (n.d.), by hiding technical details and permitting the semantic equivalences to emerge as the centerpiece. One outcome is that metadata experts, who are typically not programmers, can enter the translation logic into a spreadsheet that can be automatically converted into executable code. In this paper, we describe the implementation of the Dublin Core Terms application profile in the management of crosswalks involving MARC. A crosswalk that encodes an application profile extends the typical format with two columns: one that annotates the namespace to which an element belongs, and one that annotates a 'broader-narrower' relation between a pair of elements, such as Dublin Core coverage and Dublin Core Terms spatial. This information is sufficient to produce scripts written in OCLC's Semantic Equivalence Expression Language (or Seel), which are called from the Crosswalk Web Service to generate production-grade translations. With its focus on elements that can be mixed, matched, added, and redefined, the application profile (Heery and Patel, 2000) is a natural fit with the translation model of the Crosswalk Web Service, which attempts to achieve interoperability by mapping one pair of elements at a time.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  10. Si, L.: Encoding formats and consideration of requirements for mapping (2007) 0.03
    0.025731724 = product of:
      0.07719517 = sum of:
        0.018148692 = weight(_text_:of in 540) [ClassicSimilarity], result of:
          0.018148692 = score(doc=540,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.29624295 = fieldWeight in 540, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=540)
        0.04046881 = weight(_text_:systems in 540) [ClassicSimilarity], result of:
          0.04046881 = score(doc=540,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.33612844 = fieldWeight in 540, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=540)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 540) [ClassicSimilarity], result of:
              0.037155323 = score(doc=540,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 540, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=540)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    With the increasing requirement of establishing semantic mappings between different vocabularies, further development of these encoding formats is becoming more and more important. For this reason, four types of knowledge representation formats were assessed:MARC21 for Classification Data in XML, Zthes XML Schema, XTM(XML Topic Map), and SKOS (Simple Knowledge Organisation System). This paper explores the potential of adapting these representation formats to support different semantic mapping methods, and discusses the implication of extending them to represent more complex KOS.
    Content
    Präsentation während der Veranstaltung "Networked Knowledge Organization Systems and Services: The 6th European Networked Knowledge Organization Systems (NKOS) Workshop, Workshop at the 11th ECDL Conference, Budapest, Hungary, September 21st 2007".
    Date
    26.12.2011 13:22:27
  11. Haslhofer, B.: Uniform SPARQL access to interlinked (digital library) sources (2007) 0.03
    0.025316436 = product of:
      0.075949304 = sum of:
        0.008467626 = weight(_text_:of in 541) [ClassicSimilarity], result of:
          0.008467626 = score(doc=541,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.13821793 = fieldWeight in 541, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=541)
        0.046250064 = weight(_text_:systems in 541) [ClassicSimilarity], result of:
          0.046250064 = score(doc=541,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.38414678 = fieldWeight in 541, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=541)
        0.021231614 = product of:
          0.042463228 = sum of:
            0.042463228 = weight(_text_:22 in 541) [ClassicSimilarity], result of:
              0.042463228 = score(doc=541,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.30952093 = fieldWeight in 541, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=541)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    In this presentation, we therefore focus on a solution for providing uniform access to Digital Libraries and other online services. In order to enable uniform query access to heterogeneous sources, we must provide metadata interoperability in a way that a query language - in this case SPARQL - can cope with the incompatibility of the metadata in various sources without changing their already existing information models.
    Content
    Präsentation während der Veranstaltung "Networked Knowledge Organization Systems and Services: The 6th European Networked Knowledge Organization Systems (NKOS) Workshop, Workshop at the 11th ECDL Conference, Budapest, Hungary, September 21st 2007".
    Date
    26.12.2011 13:22:46
  12. Tudhope, D.; Binding, C.: Toward terminology services : experiences with a pilot Web service thesaurus browser (2006) 0.02
    0.024174772 = product of:
      0.07252432 = sum of:
        0.03355781 = weight(_text_:applications in 1955) [ClassicSimilarity], result of:
          0.03355781 = score(doc=1955,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.19456528 = fieldWeight in 1955, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03125 = fieldNorm(doc=1955)
        0.015841477 = weight(_text_:of in 1955) [ClassicSimilarity], result of:
          0.015841477 = score(doc=1955,freq=28.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25858206 = fieldWeight in 1955, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=1955)
        0.023125032 = weight(_text_:systems in 1955) [ClassicSimilarity], result of:
          0.023125032 = score(doc=1955,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.19207339 = fieldWeight in 1955, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=1955)
      0.33333334 = coord(3/9)
    
    Abstract
    Dublin Core recommends controlled terminology for the subject of a resource. Knowledge organization systems (KOS), such as classifications, gazetteers, taxonomies and thesauri, provide controlled vocabularies that organize and structure concepts for indexing, classifying, browsing and search. For example, a thesaurus employs a set of standard semantic relationships (ISO 2788, ISO 5964), and major thesauri have a large entry vocabulary of terms considered equivalent for retrieval purposes. Many KOS have been made available for Web-based access. However, they are often not fully integrated into indexing and search systems and the full potential for networked and programmatic access remains untapped. The lack of standardized access and interchange formats impedes wider use of KOS resources. We developed a Web demonstrator (www.comp.glam.ac.uk/~FACET/webdemo/) for the FACET project (www.comp.glam.ac.uk/~facet/facetproject.html) that explored thesaurus-based query expansion with the Getty Art and Architecture Thesaurus. A Web demonstrator was implemented via Active Server Pages (ASP) with server-side scripting and compiled server-side components for database access, and cascading style sheets for presentation. The browser-based interactive interface permits dynamic control of query term expansion. However, being based on a custom thesaurus representation and API, the techniques cannot be applied directly to thesauri in other formats on the Web. General programmatic access requires commonly agreed protocols, for example, building on Web and Grid services. The development of common KOS representation formats and service protocols are closely linked. Linda Hill and colleagues argued in 2002 for a general KOS service protocol from which protocols for specific types of KOS can be derived. Thus, in the future, a combination of thesaurus and query protocols might permit a thesaurus to be used with a choice of search tools on various kinds of databases. Service-oriented architectures bring an opportunity for moving toward a clearer separation of interface components from the underlying data sources. In our view, basing distributed protocol services on the atomic elements of thesaurus data structures and relationships is not necessarily the best approach because client operations that require multiple client-server calls would carry too much overhead. This would limit the interfaces that could be offered by applications following such a protocol. Advanced interactive interfaces require protocols that group primitive thesaurus data elements (via their relationships) into composites to achieve reasonable response.
    Source
    Bulletin of the American Society for Information Science and Technology. 33(2006) no.5, S.xx-xx
  13. Mayr, P.; Petras, V.; Walter, A.-K.: Results from a German terminology mapping effort : intra- and interdisciplinary cross-concordances between controlled vocabularies (2007) 0.02
    0.022668786 = product of:
      0.06800636 = sum of:
        0.029363085 = weight(_text_:applications in 542) [ClassicSimilarity], result of:
          0.029363085 = score(doc=542,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.17024462 = fieldWeight in 542, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.02734375 = fieldNorm(doc=542)
        0.013861292 = weight(_text_:of in 542) [ClassicSimilarity], result of:
          0.013861292 = score(doc=542,freq=28.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.22625929 = fieldWeight in 542, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.02734375 = fieldNorm(doc=542)
        0.024781981 = weight(_text_:systems in 542) [ClassicSimilarity], result of:
          0.024781981 = score(doc=542,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.20583579 = fieldWeight in 542, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.02734375 = fieldNorm(doc=542)
      0.33333334 = coord(3/9)
    
    Abstract
    In 2004, the German Federal Ministry for Education and Research funded a major terminology mapping initiative at the GESIS Social Science Information Centre in Bonn (GESIS-IZ), which will find its conclusion this year. The task of this terminology mapping initiative was to organize, create and manage 'crossconcordances' between major controlled vocabularies (thesauri, classification systems, subject heading lists) centred around the social sciences but quickly extending to other subject areas. Cross-concordances are intellectually (manually) created crosswalks that determine equivalence, hierarchy, and association relations between terms from two controlled vocabularies. Most vocabularies have been related bilaterally, that is, there is a cross-concordance relating terms from vocabulary A to vocabulary B as well as a cross-concordance relating terms from vocabulary B to vocabulary A (bilateral relations are not necessarily symmetrical). Till August 2007, 24 controlled vocabularies from 11 disciplines will be connected with vocabulary sizes ranging from 2,000 - 17,000 terms per vocabulary. To date more than 260,000 relations are generated. A database including all vocabularies and cross-concordances was built and a 'heterogeneity service' developed, a web service, which makes the cross-concordances available for other applications. Many cross-concordances are already implemented and utilized for the German Social Science Information Portal Sowiport (www.sowiport.de), which searches bibliographical and other information resources (incl. 13 databases with 10 different vocabularies and ca. 2.5 million references).
    In the final phase of the project, a major evaluation effort is under way to test and measure the effectiveness of the vocabulary mappings in an information system environment. Actual user queries are tested in a distributed search environment, where several bibliographic databases with different controlled vocabularies are searched at the same time. Three query variations are compared to each other: a free-text search without focusing on using the controlled vocabulary or terminology mapping; a controlled vocabulary search, where terms from one vocabulary (a 'home' vocabulary thought to be familiar to the user of a particular database) are used to search all databases; and finally, a search, where controlled vocabulary terms are translated into the terms of the respective controlled vocabulary of the database. For evaluation purposes, types of cross-concordances are distinguished between intradisciplinary vocabularies (vocabularies within the social sciences) and interdisciplinary vocabularies (social sciences to other disciplines as well as other combinations). Simultaneously, an extensive quantitative analysis is conducted aimed at finding patterns in terminology mappings that can explain trends in the effectiveness of terminology mappings, particularly looking at overlapping terms, types of determined relations (equivalence, hierarchy etc.), size of participating vocabularies, etc. This project is the largest terminology mapping effort in Germany. The number and variety of controlled vocabularies targeted provide an optimal basis for insights and further research opportunities. To our knowledge, terminology mapping efforts have rarely been evaluated with stringent qualitative and quantitative measures. This research should contribute in this area. For the NKOS workshop, we plan to present an overview of the project and participating vocabularies, an introduction to the heterogeneity service and its application as well as some of the results and findings of the evaluation, which will be concluded in August.
    Content
    Präsentation während der Veranstaltung "Networked Knowledge Organization Systems and Services: The 6th European Networked Knowledge Organization Systems (NKOS) Workshop, Workshop at the 11th ECDL Conference, Budapest, Hungary, September 21st 2007".
  14. Boteram, F.; Hubrich, J.: Towards a comprehensive international Knowledge Organization System (2008) 0.02
    0.017978448 = product of:
      0.080903016 = sum of:
        0.0490556 = weight(_text_:systems in 4786) [ClassicSimilarity], result of:
          0.0490556 = score(doc=4786,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.4074492 = fieldWeight in 4786, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.09375 = fieldNorm(doc=4786)
        0.031847417 = product of:
          0.063694835 = sum of:
            0.063694835 = weight(_text_:22 in 4786) [ClassicSimilarity], result of:
              0.063694835 = score(doc=4786,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.46428138 = fieldWeight in 4786, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4786)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Content
    Präsentation anlässlich: NKOS 2008 - Networked Knowledge Organization Systems, September 19th 2008 ECDL-Conference, Arhus.
    Date
    22. 9.2008 19:30:41
  15. Garcia Marco, F.J.: Compatibility & heterogeneity in knowledge organization : some reflections around a case study in the field of consumer information (2008) 0.02
    0.017347515 = product of:
      0.052042544 = sum of:
        0.018332949 = weight(_text_:of in 1678) [ClassicSimilarity], result of:
          0.018332949 = score(doc=1678,freq=24.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2992506 = fieldWeight in 1678, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1678)
        0.020439833 = weight(_text_:systems in 1678) [ClassicSimilarity], result of:
          0.020439833 = score(doc=1678,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 1678, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1678)
        0.013269759 = product of:
          0.026539518 = sum of:
            0.026539518 = weight(_text_:22 in 1678) [ClassicSimilarity], result of:
              0.026539518 = score(doc=1678,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.19345059 = fieldWeight in 1678, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1678)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    A case study in compatibility and heterogeneity of knowledge organization (KO) systems and processes is presented. It is based in the experience of the author in the field of information for consumer protection, a good example of the emerging transdisciplinary applied social sciences. The activities and knowledge organization problems and solutions of the Aragonian Consumers' Information and Documentation Centre are described and analyzed. Six assertions can be concluded: a) heterogeneity and compatibility are certainly an inherent problem in knowledge organization and also in practical domains; b) knowledge organization is also a social task, not only a lögical one; c) knowledge organization is affected by economical and efficiency considerations; d) knowledge organization is at the heart of Knowledge Management; e) identifying and maintaining the focus in interdisciplinary fields is a must; f the different knowledge organization tools of a institution must be considered as an integrated system, pursuing a unifying model.
    Date
    16. 3.2008 18:22:50
    Source
    Kompatibilität, Medien und Ethik in der Wissensorganisation - Compatibility, Media and Ethics in Knowledge Organization: Proceedings der 10. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation Wien, 3.-5. Juli 2006 - Proceedings of the 10th Conference of the German Section of the International Society of Knowledge Organization Vienna, 3-5 July 2006. Ed.: H.P. Ohly, S. Netscher u. K. Mitgutsch
  16. Krause, J.: Semantic heterogeneity : comparing new semantic web approaches with those of digital libraries (2008) 0.02
    0.0170833 = product of:
      0.07687485 = sum of:
        0.059322387 = weight(_text_:applications in 1908) [ClassicSimilarity], result of:
          0.059322387 = score(doc=1908,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34394607 = fieldWeight in 1908, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1908)
        0.017552461 = weight(_text_:of in 1908) [ClassicSimilarity], result of:
          0.017552461 = score(doc=1908,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.28651062 = fieldWeight in 1908, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1908)
      0.22222222 = coord(2/9)
    
    Abstract
    Purpose - To demonstrate that newer developments in the semantic web community, particularly those based on ontologies (simple knowledge organization system and others) mitigate common arguments from the digital library (DL) community against participation in the Semantic web. Design/methodology/approach - The approach is a semantic web discussion focusing on the weak structure of the Web and the lack of consideration given to the semantic content during indexing. Findings - The points criticised by the semantic web and ontology approaches are the same as those of the DL "Shell model approach" from the mid-1990s, with emphasis on the centrality of its heterogeneity components (used, for example, in vascoda). The Shell model argument began with the "invisible web", necessitating the restructuring of DL approaches. The conclusion is that both approaches fit well together and that the Shell model, with its semantic heterogeneity components, can be reformulated on the semantic web basis. Practical implications - A reinterpretation of the DL approaches of semantic heterogeneity and adapting to standards and tools supported by the W3C should be the best solution. It is therefore recommended that - although most of the semantic web standards are not technologically refined for commercial applications at present - all individual DL developments should be checked for their adaptability to the W3C standards of the semantic web. Originality/value - A unique conceptual analysis of the parallel developments emanating from the digital library and semantic web communities.
    Footnote
    Beitrag eines Themenheftes "Digital libraries and the semantic web: context, applications and research".
  17. Hoffmann, P.; Médini and , L.; Ghodous, P.: Using context to improve semantic interoperability (2006) 0.02
    0.015378739 = product of:
      0.06920432 = sum of:
        0.05872617 = weight(_text_:applications in 4434) [ClassicSimilarity], result of:
          0.05872617 = score(doc=4434,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 4434, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4434)
        0.010478153 = weight(_text_:of in 4434) [ClassicSimilarity], result of:
          0.010478153 = score(doc=4434,freq=4.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17103596 = fieldWeight in 4434, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4434)
      0.22222222 = coord(2/9)
    
    Abstract
    This paper presents an approach to enhance interoperability between heterogeneous ontologies. It consists in adapting the ranking of concepts to the final users and their work context. The computations are based on an upper domain ontology, a task hierarchy and a user profile. As prerequisites, OWL ontologie have to be given, and an articulation ontology has to be built.
    Series
    Frontiers in artificial intelligence and applications; vol 143
    Source
    Leading the Web in concurrent engineering: next generation concurrent engineering. Proceeding of the 2006 ISPE Conference on Concurrent Engineering. Edited by Parisa Ghodous, Rose Dieng-Kuntz, Geilson Loureiro
  18. Liang, A.; Salokhe, G.; Sini, M.; Keizer, J.: Towards an infrastructure for semantic applications : methodologies for semantic integration of heterogeneous resources (2006) 0.01
    0.01464283 = product of:
      0.06589273 = sum of:
        0.050336715 = weight(_text_:applications in 241) [ClassicSimilarity], result of:
          0.050336715 = score(doc=241,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 241, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=241)
        0.015556021 = weight(_text_:of in 241) [ClassicSimilarity], result of:
          0.015556021 = score(doc=241,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25392252 = fieldWeight in 241, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=241)
      0.22222222 = coord(2/9)
    
    Abstract
    The semantic heterogeneity presented by Web information in the Agricultural domain presents tremendous information retrieval challenges. This article presents work taking place at the Food and Agriculture Organizations (FAO) which addresses this challenge. Based on the analysis of resources in the domain of agriculture, this paper proposes (a) an application profile (AP) for dealing with the problem of heterogeneity originating from differences in terminologies, domain coverage, and domain modelling, and (b) a root application ontology (AAO) based on the application profile which can serve as a basis for extending knowledge of the domain. The paper explains how even a small investment in the enhancement of relations between vocabularies, both metadata and domain-specific, yields a relatively large return on investment.
  19. Krötzsch, M.; Hitzler, P.; Ehrig, M.; Sure, Y.: Category theory in ontology research : concrete gain from an abstract approach (2004 (?)) 0.01
    0.01464283 = product of:
      0.06589273 = sum of:
        0.050336715 = weight(_text_:applications in 4538) [ClassicSimilarity], result of:
          0.050336715 = score(doc=4538,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 4538, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=4538)
        0.015556021 = weight(_text_:of in 4538) [ClassicSimilarity], result of:
          0.015556021 = score(doc=4538,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25392252 = fieldWeight in 4538, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4538)
      0.22222222 = coord(2/9)
    
    Abstract
    The focus of research on representing and reasoning with knowledge traditionally has been on single specifications and appropriate inference paradigms to draw conclusions from such data. Accordingly, this is also an essential aspect of ontology research which has received much attention in recent years. But ontologies introduce another new challenge based on the distributed nature of most of their applications, which requires to relate heterogeneous ontological specifications and to integrate information from multiple sources. These problems have of course been recognized, but many current approaches still lack the deep formal backgrounds on which todays reasoning paradigms are already founded. Here we propose category theory as a well-explored and very extensive mathematical foundation for modelling distributed knowledge. A particular prospect is to derive conclusions from the structure of those distributed knowledge bases, as it is for example needed when merging ontologies
  20. Koutsomitropoulos, D.A.; Solomou, G.D.; Alexopoulos, A.D.; Papatheodorou, T.S.: Semantic metadata interoperability and inference-based querying in digital repositories (2009) 0.01
    0.014341635 = product of:
      0.064537354 = sum of:
        0.050336715 = weight(_text_:applications in 3731) [ClassicSimilarity], result of:
          0.050336715 = score(doc=3731,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 3731, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=3731)
        0.014200641 = weight(_text_:of in 3731) [ClassicSimilarity], result of:
          0.014200641 = score(doc=3731,freq=10.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.23179851 = fieldWeight in 3731, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3731)
      0.22222222 = coord(2/9)
    
    Abstract
    Metadata applications have evolved in time into highly structured "islands of information" about digital resources, often bearing a strong semantic interpretation. Scarcely however are these semantics being communicated in machine readable and understandable ways. At the same time, the process for transforming the implied metadata knowledge into explicit Semantic Web descriptions can be problematic and is not always evident. In this article we take upon the well-established Dublin Core metadata standard as well as other metadata schemata, which often appear in digital repositories set-ups, and suggest a proper Semantic Web OWL ontology. In this process the authors cope with discrepancies and incompatibilities, indicative of such attempts, in novel ways. Moreover, we show the potential and necessity of this approach by demonstrating inferences on the resulting ontology, instantiated with actual metadata records. The authors conclude by presenting a working prototype that provides for inference-based querying on top of digital repositories.
    Source
    Journal of information technology research. 2(2009) no.4, p.37-53

Languages

  • e 82
  • d 12

Types

  • a 62
  • el 37
  • r 3
  • x 2
  • More… Less…