Search (132 results, page 1 of 7)

  • × year_i:[2010 TO 2020}
  • × theme_ss:"Semantische Interoperabilität"
  1. Euzenat, J.; Shvaiko, P.: Ontology matching (2010) 0.05
    0.050975315 = product of:
      0.11469446 = sum of:
        0.04745791 = weight(_text_:applications in 168) [ClassicSimilarity], result of:
          0.04745791 = score(doc=168,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.27515686 = fieldWeight in 168, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03125 = fieldNorm(doc=168)
        0.010370681 = weight(_text_:of in 168) [ClassicSimilarity], result of:
          0.010370681 = score(doc=168,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.16928169 = fieldWeight in 168, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=168)
        0.046250064 = weight(_text_:systems in 168) [ClassicSimilarity], result of:
          0.046250064 = score(doc=168,freq=16.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.38414678 = fieldWeight in 168, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=168)
        0.010615807 = product of:
          0.021231614 = sum of:
            0.021231614 = weight(_text_:22 in 168) [ClassicSimilarity], result of:
              0.021231614 = score(doc=168,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.15476047 = fieldWeight in 168, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=168)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    Ontologies are viewed as the silver bullet for many applications, but in open or evolving systems, different parties can adopt different ontologies. This increases heterogeneity problems rather than reducing heterogeneity. This book proposes ontology matching as a solution to the problem of semantic heterogeneity, offering researchers and practitioners a uniform framework of reference to currently available work. The techniques presented apply to database schema matching, catalog integration, XML schema matching and more. Ontologies tend to be found everywhere. They are viewed as the silver bullet for many applications, such as database integration, peer-to-peer systems, e-commerce, semantic web services, or social networks. However, in open or evolving systems, such as the semantic web, different parties would, in general, adopt different ontologies. Thus, merely using ontologies, like using XML, does not reduce heterogeneity: it just raises heterogeneity problems to a higher level. Euzenat and Shvaiko's book is devoted to ontology matching as a solution to the semantic heterogeneity problem faced by computer systems. Ontology matching aims at finding correspondences between semantically related entities of different ontologies. These correspondences may stand for equivalence as well as other relations, such as consequence, subsumption, or disjointness, between ontology entities. Many different matching solutions have been proposed so far from various viewpoints, e.g., databases, information systems, artificial intelligence. With Ontology Matching, researchers and practitioners will find a reference book which presents currently available work in a uniform framework. In particular, the work and the techniques presented in this book can equally be applied to database schema matching, catalog integration, XML schema matching and other related problems. The objectives of the book include presenting (i) the state of the art and (ii) the latest research results in ontology matching by providing a detailed account of matching techniques and matching systems in a systematic way from theoretical, practical and application perspectives.
    Date
    20. 6.2012 19:08:22
    LCSH
    Semantic integration (Computer systems)
    Subject
    Semantic integration (Computer systems)
  2. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.05
    0.050368343 = product of:
      0.11332877 = sum of:
        0.05872617 = weight(_text_:applications in 3283) [ClassicSimilarity], result of:
          0.05872617 = score(doc=3283,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 3283, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3283)
        0.0074091726 = weight(_text_:of in 3283) [ClassicSimilarity], result of:
          0.0074091726 = score(doc=3283,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.120940685 = fieldWeight in 3283, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3283)
        0.028615767 = weight(_text_:systems in 3283) [ClassicSimilarity], result of:
          0.028615767 = score(doc=3283,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.23767869 = fieldWeight in 3283, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3283)
        0.018577661 = product of:
          0.037155323 = sum of:
            0.037155323 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.037155323 = score(doc=3283,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    This book constitutes the refereed proceedings of the 10th Metadata and Semantics Research Conference, MTSR 2016, held in Göttingen, Germany, in November 2016. The 26 full papers and 6 short papers presented were carefully reviewed and selected from 67 submissions. The papers are organized in several sessions and tracks: Digital Libraries, Information Retrieval, Linked and Social Data, Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures, Metadata and Semantics for Agriculture, Food and Environment, Metadata and Semantics for Cultural Collections and Applications, European and National Projects.
  3. Stamou, G.; Chortaras, A.: Ontological query answering over semantic data (2017) 0.04
    0.040611103 = product of:
      0.12183331 = sum of:
        0.06711562 = weight(_text_:applications in 3926) [ClassicSimilarity], result of:
          0.06711562 = score(doc=3926,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.38913056 = fieldWeight in 3926, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0625 = fieldNorm(doc=3926)
        0.008467626 = weight(_text_:of in 3926) [ClassicSimilarity], result of:
          0.008467626 = score(doc=3926,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.13821793 = fieldWeight in 3926, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=3926)
        0.046250064 = weight(_text_:systems in 3926) [ClassicSimilarity], result of:
          0.046250064 = score(doc=3926,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.38414678 = fieldWeight in 3926, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0625 = fieldNorm(doc=3926)
      0.33333334 = coord(3/9)
    
    Abstract
    Modern information retrieval systems advance user experience on the basis of concept-based rather than keyword-based query answering.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
  4. Dunsire, G.: Enhancing information services using machine-to-machine terminology services (2011) 0.04
    0.040410094 = product of:
      0.121230274 = sum of:
        0.05872617 = weight(_text_:applications in 1805) [ClassicSimilarity], result of:
          0.05872617 = score(doc=1805,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34048924 = fieldWeight in 1805, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1805)
        0.014818345 = weight(_text_:of in 1805) [ClassicSimilarity], result of:
          0.014818345 = score(doc=1805,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24188137 = fieldWeight in 1805, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1805)
        0.047685754 = weight(_text_:software in 1805) [ClassicSimilarity], result of:
          0.047685754 = score(doc=1805,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.30681872 = fieldWeight in 1805, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1805)
      0.33333334 = coord(3/9)
    
    Abstract
    This paper describes the basic concepts of terminology services and their role in information retrieval interfaces. Terminology services are consumed by other software applications using machine-to-machine protocols, rather than directly by end-users. An example of a terminology service is the pilot developed by the High Level Thesaurus (HILT) project which has successfully demonstrated its potential for enhancing subject retrieval in operational services. Examples of enhancements in three such services are given. The paper discusses the future development of terminology services in relation to the Semantic Web.
  5. Ioannou, E.; Nejdl, W.; Niederée, C.; Velegrakis, Y.: Embracing uncertainty in entity linking (2012) 0.04
    0.03954739 = product of:
      0.118642166 = sum of:
        0.0726548 = weight(_text_:applications in 433) [ClassicSimilarity], result of:
          0.0726548 = score(doc=433,freq=6.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.42124623 = fieldWeight in 433, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=433)
        0.010584532 = weight(_text_:of in 433) [ClassicSimilarity], result of:
          0.010584532 = score(doc=433,freq=8.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.17277241 = fieldWeight in 433, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=433)
        0.03540283 = weight(_text_:systems in 433) [ClassicSimilarity], result of:
          0.03540283 = score(doc=433,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.29405114 = fieldWeight in 433, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=433)
      0.33333334 = coord(3/9)
    
    Abstract
    The modern Web has grown from a publishing place of well-structured data and HTML pages for companies and experienced users into a vivid publishing and data exchange community in which everyone can participate, both as a data consumer and as a data producer. Unavoidably, the data available on the Web became highly heterogeneous, ranging from highly structured and semistructured to highly unstructured user-generated content, reflecting different perspectives and structuring principles. The full potential of such data can only be realized by combining information from multiple sources. For instance, the knowledge that is typically embedded in monolithic applications can be outsourced and, thus, used also in other applications. Numerous systems nowadays are already actively utilizing existing content from various sources such as WordNet or Wikipedia. Some well-known examples of such systems include DBpedia, Freebase, Spock, and DBLife. A major challenge during combining and querying information from multiple heterogeneous sources is entity linkage, i.e., the ability to detect whether two pieces of information correspond to the same real-world object. This chapter introduces a novel approach for addressing the entity linkage problem for heterogeneous, uncertain, and volatile data.
    Series
    Data-centric systems and applications
  6. Lumsden, J.; Hall, H.; Cruickshank, P.: Ontology definition and construction, and epistemological adequacy for systems interoperability : a practitioner analysis (2011) 0.04
    0.036522295 = product of:
      0.10956688 = sum of:
        0.041947264 = weight(_text_:applications in 4801) [ClassicSimilarity], result of:
          0.041947264 = score(doc=4801,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 4801, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4801)
        0.017552461 = weight(_text_:of in 4801) [ClassicSimilarity], result of:
          0.017552461 = score(doc=4801,freq=22.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.28651062 = fieldWeight in 4801, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4801)
        0.050067157 = weight(_text_:systems in 4801) [ClassicSimilarity], result of:
          0.050067157 = score(doc=4801,freq=12.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.41585106 = fieldWeight in 4801, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4801)
      0.33333334 = coord(3/9)
    
    Abstract
    Ontology development is considered to be a useful approach to the design and implementation of interoperable systems. This literature review and commentary examines the current state of knowledge in this field with particular reference to processes involved in assuring epistemological adequacy. It takes the perspective of the information systems practitioner keen to adopt a systematic approach to in-house ontology design, taking into consideration previously published work. The study arises from author involvement in an integration/interoperability project on systems that support Scottish Common Housing Registers in which, ultimately, ontological modelling was not deployed. Issues concerning the agreement of meaning, and the implications for the creation of interoperable systems, are discussed. The extent to which those theories, methods and frameworks provide practitioners with a usable set of tools is explored, and examples of practical applications of ontological modelling are noted. The findings from the review of the literature demonstrate a number of difficulties faced by information systems practitioners keen to develop and deploy domain ontologies. A major problem is deciding which broad approach to take: to rely on automatic ontology construction techniques, or to rely on key words and domain experts to develop ontologies.
    Source
    Journal of information science. xx(2011), no.x, S.1-9
  7. Metadata and semantics research : 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings (2014) 0.04
    0.035164773 = product of:
      0.10549432 = sum of:
        0.059322387 = weight(_text_:applications in 2192) [ClassicSimilarity], result of:
          0.059322387 = score(doc=2192,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.34394607 = fieldWeight in 2192, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2192)
        0.005292266 = weight(_text_:of in 2192) [ClassicSimilarity], result of:
          0.005292266 = score(doc=2192,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.086386204 = fieldWeight in 2192, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2192)
        0.040879667 = weight(_text_:systems in 2192) [ClassicSimilarity], result of:
          0.040879667 = score(doc=2192,freq=8.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.339541 = fieldWeight in 2192, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2192)
      0.33333334 = coord(3/9)
    
    Abstract
    This book constitutes the refereed proceedings of the 8th Metadata and Semantics Research Conference, MTSR 2014, held in Karlsruhe, Germany, in November 2014. The 23 full papers and 9 short papers presented were carefully reviewed and selected from 57 submissions. The papers are organized in several sessions and tracks. They cover the following topics: metadata and linked data: tools and models; (meta) data quality assessment and curation; semantic interoperability, ontology-based data access and representation; big data and digital libraries in health, science and technology; metadata and semantics for open repositories, research information systems and data infrastructure; metadata and semantics for cultural collections and applications; semantics for agriculture, food and environment.
    Content
    Metadata and linked data.- Tools and models.- (Meta)data quality assessment and curation.- Semantic interoperability, ontology-based data access and representation.- Big data and digital libraries in health, science and technology.- Metadata and semantics for open repositories, research information systems and data infrastructure.- Metadata and semantics for cultural collections and applications.- Semantics for agriculture, food and environment.
    LCSH
    Information storage and retrieval systems
    Subject
    Information storage and retrieval systems
  8. Ledl, A.: Demonstration of the BAsel Register of Thesauri, Ontologies & Classifications (BARTOC) (2015) 0.04
    0.035035666 = product of:
      0.105106995 = sum of:
        0.050336715 = weight(_text_:applications in 2038) [ClassicSimilarity], result of:
          0.050336715 = score(doc=2038,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 2038, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=2038)
        0.020082738 = weight(_text_:of in 2038) [ClassicSimilarity], result of:
          0.020082738 = score(doc=2038,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 2038, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2038)
        0.034687545 = weight(_text_:systems in 2038) [ClassicSimilarity], result of:
          0.034687545 = score(doc=2038,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 2038, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=2038)
      0.33333334 = coord(3/9)
    
    Abstract
    The BAsel Register of Thesauri, Ontologies & Classifications (BARTOC, http://bartoc.org) is a bibliographic database aiming to record metadata of as many Knowledge Organization Systems as possible. It has a facetted, responsive web design search interface in 20 EU languages. With more than 1'300 interdisciplinary items in 77 languages, BARTOC is the largest database of its kind, multilingual both by content and features, and it is still growing. This being said, the demonstration of BARTOC would be suitable for topic nr. 10 [Multilingual and Interdisciplinary KOS applications and tools]. BARTOC has been developed by the University Library of Basel, Switzerland. It is rooted in the tradition of library and information science of collecting bibliographic records of controlled and structured vocabularies, yet in a more contemporary manner. BARTOC is based on the open source content management system Drupal 7.
    Content
    Vortrag anlässlich: 14th European Networked Knowledge Organization Systems (NKOS) Workshop, TPDL 2015 Conference in Poznan, Poland, Friday 18th September 2015. Vgl. auch: http://bartoc.org/.
  9. Metadata and semantics research : 9th Research Conference, MTSR 2015, Manchester, UK, September 9-11, 2015, Proceedings (2015) 0.03
    0.033056945 = product of:
      0.099170834 = sum of:
        0.050336715 = weight(_text_:applications in 3274) [ClassicSimilarity], result of:
          0.050336715 = score(doc=3274,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2918479 = fieldWeight in 3274, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.046875 = fieldNorm(doc=3274)
        0.0063507194 = weight(_text_:of in 3274) [ClassicSimilarity], result of:
          0.0063507194 = score(doc=3274,freq=2.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.103663445 = fieldWeight in 3274, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3274)
        0.042483397 = weight(_text_:systems in 3274) [ClassicSimilarity], result of:
          0.042483397 = score(doc=3274,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.35286134 = fieldWeight in 3274, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=3274)
      0.33333334 = coord(3/9)
    
    Abstract
    This book constitutes the refereed proceedings of the 9th Metadata and Semantics Research Conference, MTSR 2015, held in Manchester, UK, in September 2015. The 35 full papers and 3 short papers presented together with 2 poster papers were carefully reviewed and selected from 76 submissions.
    Content
    The papers are organized in several sessions and tracks: general track on ontology evolution, engineering, and frameworks, semantic Web and metadata extraction, modelling, interoperability and exploratory search, data analysis, reuse and visualization; track on digital libraries, information retrieval, linked and social data; track on metadata and semantics for open repositories, research information systems and data infrastructure; track on metadata and semantics for agriculture, food and environment; track on metadata and semantics for cultural collections and applications; track on European and national projects.
    LCSH
    Information storage and retrieval systems
    Subject
    Information storage and retrieval systems
  10. Shah, C.: Collaborative information seeking : the art and science of making the whole greater than the sum of all (2012) 0.03
    0.031078879 = product of:
      0.09323663 = sum of:
        0.04745791 = weight(_text_:applications in 360) [ClassicSimilarity], result of:
          0.04745791 = score(doc=360,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.27515686 = fieldWeight in 360, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03125 = fieldNorm(doc=360)
        0.017456459 = weight(_text_:of in 360) [ClassicSimilarity], result of:
          0.017456459 = score(doc=360,freq=34.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.28494355 = fieldWeight in 360, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=360)
        0.028322265 = weight(_text_:systems in 360) [ClassicSimilarity], result of:
          0.028322265 = score(doc=360,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.2352409 = fieldWeight in 360, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=360)
      0.33333334 = coord(3/9)
    
    Abstract
    Today's complex, information-intensive problems often require people to work together. Mostly these tasks go far beyond simply searching together; they include information lookup, sharing, synthesis, and decision-making. In addition, they all have an end-goal that is mutually beneficial to all parties involved. Such "collaborative information seeking" (CIS) projects typically last several sessions and the participants all share an intention to contribute and benefit. Not surprisingly, these processes are highly interactive. Shah focuses on two individually well-understood notions: collaboration and information seeking, with the goal of bringing them together to show how it is a natural tendency for humans to work together on complex tasks. The first part of his book introduces the general notions of collaboration and information seeking, as well as related concepts, terminology, and frameworks; and thus provides the reader with a comprehensive treatment of the concepts underlying CIS. The second part of the book details CIS as a standalone domain. A series of frameworks, theories, and models are introduced to provide a conceptual basis for CIS. The final part describes several systems and applications of CIS, along with their broader implications on other fields such as computer-supported cooperative work (CSCW) and human-computer interaction (HCI). With this first comprehensive overview of an exciting new research field, Shah delivers to graduate students and researchers in academia and industry an encompassing description of the technologies involved, state-of-the-art results, and open challenges as well as research opportunities.
    Content
    Inhalt: Part I Introduction.- Introduction.- Collaboration.- Collaborative Information Seeking (CIS) in Context.- Part II Conceptual Understanding of CIS.- Frameworks for CIS Research and Development.- Toward a Model for CIS.- Part III CIS Systems, Applications, and Implications.- Systems and Tools for CIS.- Evaluation.- Conclusion.- Ten Stories of Five Cs.- Brief Overview of Computer-Supported Cooperative Work (CSCW).- Brief Overview of Computer-Supported Collaborative Learning (CSCL).- Brief Overview of Computer-Mediated Communication (CMC).
  11. Semantic search over the Web (2012) 0.03
    0.029839044 = product of:
      0.08951713 = sum of:
        0.04745791 = weight(_text_:applications in 411) [ClassicSimilarity], result of:
          0.04745791 = score(doc=411,freq=4.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.27515686 = fieldWeight in 411, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03125 = fieldNorm(doc=411)
        0.018934188 = weight(_text_:of in 411) [ClassicSimilarity], result of:
          0.018934188 = score(doc=411,freq=40.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.3090647 = fieldWeight in 411, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=411)
        0.023125032 = weight(_text_:systems in 411) [ClassicSimilarity], result of:
          0.023125032 = score(doc=411,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.19207339 = fieldWeight in 411, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=411)
      0.33333334 = coord(3/9)
    
    Abstract
    The Web has become the world's largest database, with search being the main tool that allows organizations and individuals to exploit its huge amount of information. Search on the Web has been traditionally based on textual and structural similarities, ignoring to a large degree the semantic dimension, i.e., understanding the meaning of the query and of the document content. Combining search and semantics gives birth to the idea of semantic search. Traditional search engines have already advertised some semantic dimensions. Some of them, for instance, can enhance their generated result sets with documents that are semantically related to the query terms even though they may not include these terms. Nevertheless, the exploitation of the semantic search has not yet reached its full potential. In this book, Roberto De Virgilio, Francesco Guerra and Yannis Velegrakis present an extensive overview of the work done in Semantic Search and other related areas. They explore different technologies and solutions in depth, making their collection a valuable and stimulating reading for both academic and industrial researchers. The book is divided into three parts. The first introduces the readers to the basic notions of the Web of Data. It describes the different kinds of data that exist, their topology, and their storing and indexing techniques. The second part is dedicated to Web Search. It presents different types of search, like the exploratory or the path-oriented, alongside methods for their efficient and effective implementation. Other related topics included in this part are the use of uncertainty in query answering, the exploitation of ontologies, and the use of semantics in mashup design and operation. The focus of the third part is on linked data, and more specifically, on applying ideas originating in recommender systems on linked data management, and on techniques for the efficiently querying answering on linked data.
    Content
    Inhalt: Introduction.- Part I Introduction to Web of Data.- Topology of the Web of Data.- Storing and Indexing Massive RDF Data Sets.- Designing Exploratory Search Applications upon Web Data Sources.- Part II Search over the Web.- Path-oriented Keyword Search query over RDF.- Interactive Query Construction for Keyword Search on the SemanticWeb.- Understanding the Semantics of Keyword Queries on Relational DataWithout Accessing the Instance.- Keyword-Based Search over Semantic Data.- Semantic Link Discovery over Relational Data.- Embracing Uncertainty in Entity Linking.- The Return of the Entity-Relationship Model: Ontological Query Answering.- Linked Data Services and Semantics-enabled Mashup.- Part III Linked Data Search engines.- A Recommender System for Linked Data.- Flint: from Web Pages to Probabilistic Semantic Data.- Searching and Browsing Linked Data with SWSE.
    Series
    Data-centric systems and applications
  12. Balakrishnan, U.; Voß, J.: ¬The Cocoda mapping tool (2015) 0.03
    0.028905444 = product of:
      0.08671633 = sum of:
        0.019949809 = weight(_text_:of in 4205) [ClassicSimilarity], result of:
          0.019949809 = score(doc=4205,freq=58.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32564276 = fieldWeight in 4205, product of:
              7.615773 = tf(freq=58.0), with freq of:
                58.0 = termFreq=58.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4205)
        0.042923648 = weight(_text_:systems in 4205) [ClassicSimilarity], result of:
          0.042923648 = score(doc=4205,freq=18.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.35651803 = fieldWeight in 4205, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4205)
        0.023842877 = weight(_text_:software in 4205) [ClassicSimilarity], result of:
          0.023842877 = score(doc=4205,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.15340936 = fieldWeight in 4205, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4205)
      0.33333334 = coord(3/9)
    
    Abstract
    Since the 90s, we have seen an explosion of information and with it there is an increase in the need for data and information aggregation systems that store and manage information. However, most of the information sources apply different Knowledge Organizations Systems (KOS) to describe the content of stored data. This heterogeneous mix of KOS in different systems complicate access and seamless sharing of information and knowledge. Concordances also known as cross-concordances or terminology mappings map different (KOS) to each other for improvement of information retrieval in such heterogeneous mix of systems. (Mayr 2010, Keil 2012). Also for coherent indexing with different terminologies, mappings are considered to be a valuable and essential working tool. However, despite efforts at standardization (e.g. SKOS, ISO 25964-2, Keil 2012, Soergel 2011); there is a significant scarcity of concordances that has led an inability to establish uniform exchange formats as well as methods and tools for maintaining mappings and making them easily accessible. This is particularly true in the field of library classification schemes. In essence, there is a lack of infrastructure for provision/exchange of concordances, their management and quality assessment as well as tools that would enable semi-automatic generation of mappings. The project "coli-conc" therefore aims to address this gap by creating the necessary infrastructure. This includes the specification of a data format for exchange of concordances (JSKOS), specification and implementation of web APIs to query concordance databases (JSKOS-API), and a modular web application to enable uniform access to knowledge organization systems, concordances and concordance assessments (Cocoda).
    The focus of the project "coli-conc" lies in semi-automatic creation of mappings between different KOS in general and the two important library classification schemes in particular - Dewey classification system (DDC) and Regensburg classification system (RVK). In the year 2000, the national libraries of Germany, Austria and Switzerland adopted DDC in an endeavor to develop a nation-wide classification scheme. But historically, in the German speaking regions, the academic libraries have been using their own home-grown systems, the most prominent and popular being the RVK. However, with the launch of DDC, building concordances between DDC and RVK has become an imperative, although it is still rare. The delay in building comprehensive concordances between these two systems has been because of major challenges posed by the sheer largeness of these two systems (38.000 classes in DDC and ca. 860.000 classes in RVK), the strong disparity in their respective structure, the variation in the perception and representation of the concepts. The challenge is compounded geometrically for any manual attempt in this direction. Although there have been efforts on automatic mappings (OAEI Library Track 2012 -- 2014 and e.g. Pfeffer 2013) in the recent years; such concordances carry the risks of inaccurate mappings, and the approaches are rather more suitable for mapping suggestions than for automatic generation of concordances (Lauser 2008; Reiner 2010). The project "coli-conc" will facilitate the creation, evaluation, and reuse of mappings with a public collection of concordances and a web application of mapping management. The proposed presentation will give an introduction to the tools and standards created and planned in the project "coli-conc". This includes preliminary work on DDC concordances (Balakrishnan 2013), an overview of the software concept, technical architecture (Voß 2015) and a demonstration of the Cocoda web application.
    Content
    Vortrag anlässlich: 14th European Networked Knowledge Organization Systems (NKOS) Workshop, TPDL 2015 Conference in Poznan, Poland, Friday 18th September 2015. Vgl. auch: http://eprints.rclis.org/28007/. Vgl. auch: http://coli-conc.gbv.de/.
  13. Si, L.E.; O'Brien, A.; Probets, S.: Integration of distributed terminology resources to facilitate subject cross-browsing for library portal systems (2010) 0.03
    0.028446961 = product of:
      0.08534088 = sum of:
        0.015876798 = weight(_text_:of in 3944) [ClassicSimilarity], result of:
          0.015876798 = score(doc=3944,freq=18.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.25915858 = fieldWeight in 3944, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3944)
        0.03540283 = weight(_text_:systems in 3944) [ClassicSimilarity], result of:
          0.03540283 = score(doc=3944,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.29405114 = fieldWeight in 3944, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3944)
        0.034061253 = weight(_text_:software in 3944) [ClassicSimilarity], result of:
          0.034061253 = score(doc=3944,freq=2.0), product of:
            0.15541996 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.03917671 = queryNorm
            0.21915624 = fieldWeight in 3944, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3944)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose - The paper aims to develop a prototype middleware framework between different terminology resources in order to provide a subject cross-browsing service for library portal systems. Design/methodology/approach - Nine terminology experts were interviewed to collect appropriate knowledge to support the development of a theoretical framework for the research. Based on this, a simplified software-based prototype system was constructed incorporating the knowledge acquired. The prototype involved mappings between the computer science schedule of the Dewey Decimal Classification (which acted as a spine) and two controlled vocabularies, UKAT and ACM Computing Classification. Subsequently, six further experts in the field were invited to evaluate the prototype system and provide feedback to improve the framework. Findings - The major findings showed that, given the large variety of terminology resources distributed throughout the web, the proposed middleware service is essential to integrate technically and semantically the different terminology resources in order to facilitate subject cross-browsing. A set of recommendations are also made, outlining the important approaches and features that support such a cross-browsing middleware service. Originality/value - Cross-browsing features are lacking in current library portal meta-search systems. Users are therefore deprived of this valuable retrieval provision. This research investigated the case for such a system and developed a prototype to fill this gap.
    Footnote
    Beitrag in einem Special Issue: Content architecture: exploiting and managing diverse resources: proceedings of the first national conference of the United Kingdom chapter of the International Society for Knowedge Organization (ISKO)
  14. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2012) 0.03
    0.027655158 = product of:
      0.08296547 = sum of:
        0.017962547 = weight(_text_:of in 1967) [ClassicSimilarity], result of:
          0.017962547 = score(doc=1967,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.2932045 = fieldWeight in 1967, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1967)
        0.042483397 = weight(_text_:systems in 1967) [ClassicSimilarity], result of:
          0.042483397 = score(doc=1967,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.35286134 = fieldWeight in 1967, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=1967)
        0.022519529 = product of:
          0.045039058 = sum of:
            0.045039058 = weight(_text_:22 in 1967) [ClassicSimilarity], result of:
              0.045039058 = score(doc=1967,freq=4.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.32829654 = fieldWeight in 1967, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1967)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    This paper reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The paper discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and /or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the DDC (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
  15. Reasoning Web : Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures (2017) 0.03
    0.026673343 = product of:
      0.080020025 = sum of:
        0.041947264 = weight(_text_:applications in 3934) [ClassicSimilarity], result of:
          0.041947264 = score(doc=3934,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 3934, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3934)
        0.009166474 = weight(_text_:of in 3934) [ClassicSimilarity], result of:
          0.009166474 = score(doc=3934,freq=6.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.1496253 = fieldWeight in 3934, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3934)
        0.02890629 = weight(_text_:systems in 3934) [ClassicSimilarity], result of:
          0.02890629 = score(doc=3934,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.24009174 = fieldWeight in 3934, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3934)
      0.33333334 = coord(3/9)
    
    Abstract
    This volume contains the lecture notes of the 13th Reasoning Web Summer School, RW 2017, held in London, UK, in July 2017. In 2017, the theme of the school was "Semantic Interoperability on the Web", which encompasses subjects such as data integration, open data management, reasoning over linked data, database to ontology mapping, query answering over ontologies, hybrid reasoning with rules and ontologies, and ontology-based dynamic systems. The papers of this volume focus on these topics and also address foundational reasoning techniques used in answer set programming and ontologies.
    Series
    Lecture Notes in Computer Scienc;10370 )(Information Systems and Applications, incl. Internet/Web, and HCI
  16. Boteram, F.; Hubrich, J.: Specifying intersystem relations : requirements, strategies, and issues (2010) 0.03
    0.02616328 = product of:
      0.07848984 = sum of:
        0.020082738 = weight(_text_:of in 3691) [ClassicSimilarity], result of:
          0.020082738 = score(doc=3691,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 3691, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3691)
        0.042483397 = weight(_text_:systems in 3691) [ClassicSimilarity], result of:
          0.042483397 = score(doc=3691,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.35286134 = fieldWeight in 3691, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=3691)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 3691) [ClassicSimilarity], result of:
              0.031847417 = score(doc=3691,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 3691, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3691)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Ideally, intersystem relations complement highly expressive and thoroughly structured relational indexing languages. The relational structures of the participating systems contribute to the meaning of the individual terms or classes. When conceptualizing mapping relations the structural and functional design of the respective systems must be fully taken into account. As intersystem relations may differ considerably from familiar interconcept relations, the creation of an adequate inventory that is general in coverage and specific in depth demands a deep understanding of the requirements and properties of mapping relations. The characteristics of specific mapping relations largely rely on the characteristics of the systems they are intended to connect. The detailed declaration of differences and peculiarities of specific mapping relations is an important prerequisite for modelling these relations. First approaches towards specifying
    Date
    22. 7.2010 17:11:51
  17. Neumaier, S.: Data integration for open data on the Web (2017) 0.03
    0.025116816 = product of:
      0.07535045 = sum of:
        0.041947264 = weight(_text_:applications in 3923) [ClassicSimilarity], result of:
          0.041947264 = score(doc=3923,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.2432066 = fieldWeight in 3923, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3923)
        0.012963352 = weight(_text_:of in 3923) [ClassicSimilarity], result of:
          0.012963352 = score(doc=3923,freq=12.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.21160212 = fieldWeight in 3923, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3923)
        0.020439833 = weight(_text_:systems in 3923) [ClassicSimilarity], result of:
          0.020439833 = score(doc=3923,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1697705 = fieldWeight in 3923, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3923)
      0.33333334 = coord(3/9)
    
    Abstract
    In this lecture we will discuss and introduce challenges of integrating openly available Web data and how to solve them. Firstly, while we will address this topic from the viewpoint of Semantic Web research, not all data is readily available as RDF or Linked Data, so we will give an introduction to different data formats prevalent on the Web, namely, standard formats for publishing and exchanging tabular, tree-shaped, and graph data. Secondly, not all Open Data is really completely open, so we will discuss and address issues around licences, terms of usage associated with Open Data, as well as documentation of data provenance. Thirdly, we will discuss issues connected with (meta-)data quality issues associated with Open Data on the Web and how Semantic Web techniques and vocabularies can be used to describe and remedy them. Fourth, we will address issues about searchability and integration of Open Data and discuss in how far semantic search can help to overcome these. We close with briefly summarizing further issues not covered explicitly herein, such as multi-linguality, temporal aspects (archiving, evolution, temporal querying), as well as how/whether OWL and RDFS reasoning on top of integrated open data could be help.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
  18. Golub, K.; Tudhope, D.; Zeng, M.L.; Zumer, M.: Terminology registries for knowledge organization systems : functionality, use, and attributes (2014) 0.02
    0.023564665 = product of:
      0.07069399 = sum of:
        0.020082738 = weight(_text_:of in 1347) [ClassicSimilarity], result of:
          0.020082738 = score(doc=1347,freq=20.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.32781258 = fieldWeight in 1347, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1347)
        0.034687545 = weight(_text_:systems in 1347) [ClassicSimilarity], result of:
          0.034687545 = score(doc=1347,freq=4.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.28811008 = fieldWeight in 1347, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.046875 = fieldNorm(doc=1347)
        0.015923709 = product of:
          0.031847417 = sum of:
            0.031847417 = weight(_text_:22 in 1347) [ClassicSimilarity], result of:
              0.031847417 = score(doc=1347,freq=2.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.23214069 = fieldWeight in 1347, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1347)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Terminology registries (TRs) are a crucial element of the infrastructure required for resource discovery services, digital libraries, Linked Data, and semantic interoperability generally. They can make the content of knowledge organization systems (KOS) available both for human and machine access. The paper describes the attributes and functionality for a TR, based on a review of published literature, existing TRs, and a survey of experts. A domain model based on user tasks is constructed and a set of core metadata elements for use in TRs is proposed. Ideally, the TR should allow searching as well as browsing for a KOS, matching a user's search while also providing information about existing terminology services, accessible to both humans and machines. The issues surrounding metadata for KOS are also discussed, together with the rationale for different aspects and the importance of a core set of KOS metadata for future machine-based access; a possible core set of metadata elements is proposed. This is dealt with in terms of practical experience and in relation to the Dublin Core Application Profile.
    Date
    22. 8.2014 17:12:54
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.9, S.1901-1916
  19. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2014) 0.02
    0.023045965 = product of:
      0.06913789 = sum of:
        0.014968789 = weight(_text_:of in 1962) [ClassicSimilarity], result of:
          0.014968789 = score(doc=1962,freq=16.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.24433708 = fieldWeight in 1962, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1962)
        0.03540283 = weight(_text_:systems in 1962) [ClassicSimilarity], result of:
          0.03540283 = score(doc=1962,freq=6.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.29405114 = fieldWeight in 1962, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1962)
        0.018766273 = product of:
          0.037532546 = sum of:
            0.037532546 = weight(_text_:22 in 1962) [ClassicSimilarity], result of:
              0.037532546 = score(doc=1962,freq=4.0), product of:
                0.13719016 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03917671 = queryNorm
                0.27358043 = fieldWeight in 1962, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1962)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    This article reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The article discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and/or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the Dewey Decimal Classification [DDC] (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
  20. Dunsire, G.; Willer, M.: Initiatives to make standard library metadata models and structures available to the Semantic Web (2010) 0.02
    0.02210239 = product of:
      0.066307165 = sum of:
        0.03355781 = weight(_text_:applications in 3965) [ClassicSimilarity], result of:
          0.03355781 = score(doc=3965,freq=2.0), product of:
            0.17247584 = queryWeight, product of:
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03917671 = queryNorm
            0.19456528 = fieldWeight in 3965, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4025097 = idf(docFreq=1471, maxDocs=44218)
              0.03125 = fieldNorm(doc=3965)
        0.016397487 = weight(_text_:of in 3965) [ClassicSimilarity], result of:
          0.016397487 = score(doc=3965,freq=30.0), product of:
            0.061262865 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03917671 = queryNorm
            0.26765788 = fieldWeight in 3965, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=3965)
        0.016351866 = weight(_text_:systems in 3965) [ClassicSimilarity], result of:
          0.016351866 = score(doc=3965,freq=2.0), product of:
            0.12039685 = queryWeight, product of:
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03917671 = queryNorm
            0.1358164 = fieldWeight in 3965, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0731742 = idf(docFreq=5561, maxDocs=44218)
              0.03125 = fieldNorm(doc=3965)
      0.33333334 = coord(3/9)
    
    Abstract
    This paper describes recent initiatives to make standard library metadata models and structures available to the Semantic Web, including IFLA standards such as Functional Requirements for Bibliographic Records (FRBR), Functional Requirements for Authority Data (FRAD), and International Standard Bibliographic Description (ISBD) along with the infrastructure that supports them. The FRBR Review Group is currently developing representations of FRAD and the entityrelationship model of FRBR in resource description framework (RDF) applications, using a combination of RDF, RDF Schema (RDFS), Simple Knowledge Organisation System (SKOS) and Web Ontology Language (OWL), cross-relating both models where appropriate. The ISBD/XML Task Group is investigating the representation of ISBD in RDF. The IFLA Namespaces project is developing an administrative and technical infrastructure to support such initiatives and encourage uptake of standards by other agencies. The paper describes similar initiatives with related external standards such as RDA - resource description and access, REICAT (the new Italian cataloguing rules) and CIDOC Conceptual Reference Model (CRM). The DCMI RDA Task Group is working with the Joint Steering Committee for RDA to develop Semantic Web representations of RDA structural elements, which are aligned with FRBR and FRAD, and controlled metadata content vocabularies. REICAT is also based on FRBR, and an object-oriented version of FRBR has been integrated with CRM, which itself has an RDF representation. CRM was initially based on the metadata needs of the museum community, and is now seeking extension to the archives community with the eventual aim of developing a model common to the main cultural information domains of archives, libraries and museums. The Vocabulary Mapping Framework (VMF) project has developed a Semantic Web tool to automatically generate mappings between metadata models from the information communities, including publishers. The tool is based on several standards, including CRM, FRAD, FRBR, MARC21 and RDA.
    The paper discusses the importance of these initiatives in releasing as linked data the very large quantities of rich, professionally-generated metadata stored in formats based on these standards, such as UNIMARC and MARC21, addressing such issues as critical mass for semantic and statistical inferencing, integration with user- and machine-generated metadata, and authenticity, veracity and trust. The paper also discusses related initiatives to release controlled vocabularies, including the Dewey Decimal Classification (DDC), ISBD, Library of Congress Name Authority File (LCNAF), Library of Congress Subject Headings (LCSH), Rameau (French subject headings), Universal Decimal Classification (UDC), and the Virtual International Authority File (VIAF) as linked data. Finally, the paper discusses the potential collective impact of these initiatives on metadata workflows and management systems.

Languages

  • e 116
  • d 15

Types

  • a 91
  • el 33
  • m 16
  • s 7
  • r 3
  • x 3
  • n 1
  • More… Less…

Subjects