Search (231 results, page 1 of 12)

  • × theme_ss:"Semantic Web"
  1. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.32
    0.32309067 = product of:
      0.484636 = sum of:
        0.041019242 = product of:
          0.12305772 = sum of:
            0.12305772 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.12305772 = score(doc=701,freq=2.0), product of:
                0.32843533 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.038739666 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.12305772 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.12305772 = score(doc=701,freq=2.0), product of:
            0.32843533 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.038739666 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.015828248 = weight(_text_:information in 701) [ClassicSimilarity], result of:
          0.015828248 = score(doc=701,freq=18.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.23274568 = fieldWeight in 701, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.058615338 = weight(_text_:retrieval in 701) [ClassicSimilarity], result of:
          0.058615338 = score(doc=701,freq=28.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.5001983 = fieldWeight in 701, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.12305772 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.12305772 = score(doc=701,freq=2.0), product of:
            0.32843533 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.038739666 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.12305772 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.12305772 = score(doc=701,freq=2.0), product of:
            0.32843533 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.038739666 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.6666667 = coord(6/9)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  2. Keyser, P. de: Indexing : from thesauri to the Semantic Web (2012) 0.05
    0.046964016 = product of:
      0.14089204 = sum of:
        0.013707667 = weight(_text_:information in 3197) [ClassicSimilarity], result of:
          0.013707667 = score(doc=3197,freq=6.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.20156369 = fieldWeight in 3197, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3197)
        0.11143831 = weight(_text_:techniques in 3197) [ClassicSimilarity], result of:
          0.11143831 = score(doc=3197,freq=10.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.65299517 = fieldWeight in 3197, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.046875 = fieldNorm(doc=3197)
        0.01574607 = product of:
          0.03149214 = sum of:
            0.03149214 = weight(_text_:22 in 3197) [ClassicSimilarity], result of:
              0.03149214 = score(doc=3197,freq=2.0), product of:
                0.13565971 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038739666 = queryNorm
                0.23214069 = fieldWeight in 3197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3197)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    Indexing consists of both novel and more traditional techniques. Cutting-edge indexing techniques, such as automatic indexing, ontologies, and topic maps, were developed independently of older techniques such as thesauri, but it is now recognized that these older methods also hold expertise. Indexing describes various traditional and novel indexing techniques, giving information professionals and students of library and information sciences a broad and comprehensible introduction to indexing. This title consists of twelve chapters: an Introduction to subject readings and theasauri; Automatic indexing versus manual indexing; Techniques applied in automatic indexing of text material; Automatic indexing of images; The black art of indexing moving images; Automatic indexing of music; Taxonomies and ontologies; Metadata formats and indexing; Tagging; Topic maps; Indexing the web; and The Semantic Web.
    Date
    24. 8.2016 14:03:22
    Series
    Chandos information professional series
  3. Multimedia content and the Semantic Web : methods, standards, and tools (2005) 0.03
    0.03474696 = product of:
      0.078180656 = sum of:
        0.00807732 = weight(_text_:information in 150) [ClassicSimilarity], result of:
          0.00807732 = score(doc=150,freq=12.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.11877254 = fieldWeight in 150, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.029373014 = weight(_text_:retrieval in 150) [ClassicSimilarity], result of:
          0.029373014 = score(doc=150,freq=18.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.25065678 = fieldWeight in 150, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.029366573 = weight(_text_:techniques in 150) [ClassicSimilarity], result of:
          0.029366573 = score(doc=150,freq=4.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.17207934 = fieldWeight in 150, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.0113637475 = product of:
          0.022727495 = sum of:
            0.022727495 = weight(_text_:22 in 150) [ClassicSimilarity], result of:
              0.022727495 = score(doc=150,freq=6.0), product of:
                0.13565971 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038739666 = queryNorm
                0.16753313 = fieldWeight in 150, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=150)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Classification
    006.7 22
    Date
    7. 3.2007 19:30:22
    DDC
    006.7 22
    Footnote
    Rez. in: JASIST 58(2007) no.3, S.457-458 (A.M.A. Ahmad): "The concept of the semantic web has emerged because search engines and text-based searching are no longer adequate, as these approaches involve an extensive information retrieval process. The deployed searching and retrieving descriptors arc naturally subjective and their deployment is often restricted to the specific application domain for which the descriptors were configured. The new era of information technology imposes different kinds of requirements and challenges. Automatic extracted audiovisual features are required, as these features are more objective, domain-independent, and more native to audiovisual content. This book is a useful guide for researchers, experts, students, and practitioners; it is a very valuable reference and can lead them through their exploration and research in multimedia content and the semantic web. The book is well organized, and introduces the concept of the semantic web and multimedia content analysis to the reader through a logical sequence from standards and hypotheses through system examples, presenting relevant tools and methods. But in some chapters readers will need a good technical background to understand some of the details. Readers may attain sufficient knowledge here to start projects or research related to the book's theme; recent results and articles related to the active research area of integrating multimedia with semantic web technologies are included. This book includes full descriptions of approaches to specific problem domains such as content search, indexing, and retrieval. This book will be very useful to researchers in the multimedia content analysis field who wish to explore the benefits of emerging semantic web technologies in applying multimedia content approaches. The first part of the book covers the definition of the two basic terms multimedia content and semantic web. The Moving Picture Experts Group standards MPEG7 and MPEG21 are quoted extensively. In addition, the means of multimedia content description are elaborated upon and schematically drawn. This extensive description is introduced by authors who are actively involved in those standards and have been participating in the work of the International Organization for Standardization (ISO)/MPEG for many years. On the other hand, this results in bias against the ad hoc or nonstandard tools for multimedia description in favor of the standard approaches. This is a general book for multimedia content; more emphasis on the general multimedia description and extraction could be provided.
    The final part of the book discusses research in multimedia content management systems and the semantic web, and presents examples and applications for semantic multimedia analysis in search and retrieval systems. These chapters describe example systems in which current projects have been implemented, and include extensive results and real demonstrations. For example, real case scenarios such as ECommerce medical applications and Web services have been introduced. Topics in natural language, speech and image processing techniques and their application for multimedia indexing, and content-based retrieval have been elaborated upon with extensive examples and deployment methods. The editors of the book themselves provide the readers with a chapter about their latest research results on knowledge-based multimedia content indexing and retrieval. Some interesting applications for multimedia content and the semantic web are introduced. Applications that have taken advantage of the metadata provided by MPEG7 in order to realize advance-access services for multimedia content have been provided. The applications discussed in the third part of the book provide useful guidance to researchers and practitioners properly planning to implement semantic multimedia analysis techniques in new research and development projects in both academia and industry. A fourth part should be added to this book: performance measurements for integrated approaches of multimedia analysis and the semantic web. Performance of the semantic approach is a very sophisticated issue and requires extensive elaboration and effort. Measuring the semantic search is an ongoing research area; several chapters concerning performance measurement and analysis would be required to adequately cover this area and introduce it to readers."
    LCSH
    Information storage and retrieval systems
    RSWK
    Semantic Web / Multimedia / Automatische Indexierung / Information Retrieval
    Subject
    Semantic Web / Multimedia / Automatische Indexierung / Information Retrieval
    Information storage and retrieval systems
  4. Prasad, A.R.D.; Madalli, D.P.: Faceted infrastructure for semantic digital libraries (2008) 0.03
    0.03224679 = product of:
      0.096740365 = sum of:
        0.011423056 = weight(_text_:information in 1905) [ClassicSimilarity], result of:
          0.011423056 = score(doc=1905,freq=6.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.16796975 = fieldWeight in 1905, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1905)
        0.043786705 = weight(_text_:retrieval in 1905) [ClassicSimilarity], result of:
          0.043786705 = score(doc=1905,freq=10.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.37365708 = fieldWeight in 1905, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1905)
        0.04153061 = weight(_text_:techniques in 1905) [ClassicSimilarity], result of:
          0.04153061 = score(doc=1905,freq=2.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.24335694 = fieldWeight in 1905, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1905)
      0.33333334 = coord(3/9)
    
    Abstract
    Purpose - The paper aims to argue that digital library retrieval should be based on semantic representations and propose a semantic infrastructure for digital libraries. Design/methodology/approach - The approach taken is formal model based on subject representation for digital libraries. Findings - Search engines and search techniques have fallen short of user expectations as they do not give context based retrieval. Deploying semantic web technologies would lead to efficient and more precise representation of digital library content and hence better retrieval. Though digital libraries often have metadata of information resources which can be accessed through OAI-PMH, much remains to be accomplished in making digital libraries semantic web compliant. This paper presents a semantic infrastructure for digital libraries, that will go a long way in providing them and web based information services with products highly customised to users needs. Research limitations/implications - Here only a model for semantic infrastructure is proposed. This model is proposed after studying current user-centric, top-down models adopted in digital library service architectures. Originality/value - This paper gives a generic model for building semantic infrastructure for digital libraries. Faceted ontologies for digital libraries is just one approach. But the same may be adopted by groups working with different approaches in building ontologies to realise efficient retrieval in digital libraries.
    Theme
    Information Gateway
    Semantisches Umfeld in Indexierung u. Retrieval
  5. Brunetti, J.M.; Roberto García, R.: User-centered design and evaluation of overview components for semantic data exploration (2014) 0.03
    0.032138307 = product of:
      0.072311185 = sum of:
        0.012923711 = weight(_text_:information in 1626) [ClassicSimilarity], result of:
          0.012923711 = score(doc=1626,freq=12.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.19003606 = fieldWeight in 1626, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1626)
        0.015665608 = weight(_text_:retrieval in 1626) [ClassicSimilarity], result of:
          0.015665608 = score(doc=1626,freq=2.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.13368362 = fieldWeight in 1626, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=1626)
        0.033224486 = weight(_text_:techniques in 1626) [ClassicSimilarity], result of:
          0.033224486 = score(doc=1626,freq=2.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.19468555 = fieldWeight in 1626, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.03125 = fieldNorm(doc=1626)
        0.01049738 = product of:
          0.02099476 = sum of:
            0.02099476 = weight(_text_:22 in 1626) [ClassicSimilarity], result of:
              0.02099476 = score(doc=1626,freq=2.0), product of:
                0.13565971 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038739666 = queryNorm
                0.15476047 = fieldWeight in 1626, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1626)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    Purpose - The growing volumes of semantic data available in the web result in the need for handling the information overload phenomenon. The potential of this amount of data is enormous but in most cases it is very difficult for users to visualize, explore and use this data, especially for lay-users without experience with Semantic Web technologies. The paper aims to discuss these issues. Design/methodology/approach - The Visual Information-Seeking Mantra "Overview first, zoom and filter, then details-on-demand" proposed by Shneiderman describes how data should be presented in different stages to achieve an effective exploration. The overview is the first user task when dealing with a data set. The objective is that the user is capable of getting an idea about the overall structure of the data set. Different information architecture (IA) components supporting the overview tasks have been developed, so they are automatically generated from semantic data, and evaluated with end-users. Findings - The chosen IA components are well known to web users, as they are present in most web pages: navigation bars, site maps and site indexes. The authors complement them with Treemaps, a visualization technique for displaying hierarchical data. These components have been developed following an iterative User-Centered Design methodology. Evaluations with end-users have shown that they get easily used to them despite the fact that they are generated automatically from structured data, without requiring knowledge about the underlying semantic technologies, and that the different overview components complement each other as they focus on different information search needs. Originality/value - Obtaining semantic data sets overviews cannot be easily done with the current semantic web browsers. Overviews become difficult to achieve with large heterogeneous data sets, which is typical in the Semantic Web, because traditional IA techniques do not easily scale to large data sets. There is little or no support to obtain overview information quickly and easily at the beginning of the exploration of a new data set. This can be a serious limitation when exploring a data set for the first time, especially for lay-users. The proposal is to reuse and adapt existing IA components to provide this overview to users and show that they can be generated automatically from the thesaurus and ontologies that structure semantic data while providing a comparable user experience to traditional web sites.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.5, S.519-536
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  6. Narock, T.; Zhou, L.; Yoon, V.: Semantic similarity of ontology instances using polarity mining (2013) 0.03
    0.031420253 = product of:
      0.09426076 = sum of:
        0.011192262 = weight(_text_:information in 620) [ClassicSimilarity], result of:
          0.011192262 = score(doc=620,freq=4.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.16457605 = fieldWeight in 620, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=620)
        0.033231772 = weight(_text_:retrieval in 620) [ClassicSimilarity], result of:
          0.033231772 = score(doc=620,freq=4.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.2835858 = fieldWeight in 620, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=620)
        0.049836725 = weight(_text_:techniques in 620) [ClassicSimilarity], result of:
          0.049836725 = score(doc=620,freq=2.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.2920283 = fieldWeight in 620, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.046875 = fieldNorm(doc=620)
      0.33333334 = coord(3/9)
    
    Abstract
    Semantic similarity is vital to many areas, such as information retrieval. Various methods have been proposed with a focus on comparing unstructured text documents. Several of these have been enhanced with ontology; however, they have not been applied to ontology instances. With the growth in ontology instance data published online through, for example, Linked Open Data, there is an increasing need to apply semantic similarity to ontology instances. Drawing on ontology-supported polarity mining (OSPM), we propose an algorithm that enhances the computation of semantic similarity with polarity mining techniques. The algorithm is evaluated with online customer review data. The experimental results show that the proposed algorithm outperforms the baseline algorithm in multiple settings.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.2, S.416-427
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  7. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.03
    0.030909814 = product of:
      0.09272944 = sum of:
        0.01305764 = weight(_text_:information in 4330) [ClassicSimilarity], result of:
          0.01305764 = score(doc=4330,freq=4.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.1920054 = fieldWeight in 4330, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4330)
        0.06130139 = weight(_text_:retrieval in 4330) [ClassicSimilarity], result of:
          0.06130139 = score(doc=4330,freq=10.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.5231199 = fieldWeight in 4330, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4330)
        0.018370414 = product of:
          0.03674083 = sum of:
            0.03674083 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.03674083 = score(doc=4330,freq=2.0), product of:
                0.13565971 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038739666 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    One vision of the Semantic Web is that it will be much like the Web we know today, except that documents will be enriched by annotations in machine understandable markup. These annotations will provide metadata about the documents as well as machine interpretable statements capturing some of the meaning of document content. We discuss how the information retrieval paradigm might be recast in such an environment. We suggest that retrieval can be tightly bound to inference. Doing so makes today's Web search engines useful to Semantic Web inference engines, and causes improvements in either retrieval or inference to lead directly to improvements in the other.
    Date
    12. 2.2011 17:35:22
  8. Zhitomirsky-Geffet, M.; Bar-Ilan, J.: Towards maximal unification of semantically diverse ontologies for controversial domains (2014) 0.03
    0.029710658 = product of:
      0.06684898 = sum of:
        0.0074615083 = weight(_text_:information in 1634) [ClassicSimilarity], result of:
          0.0074615083 = score(doc=1634,freq=4.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.10971737 = fieldWeight in 1634, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.015665608 = weight(_text_:retrieval in 1634) [ClassicSimilarity], result of:
          0.015665608 = score(doc=1634,freq=2.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.13368362 = fieldWeight in 1634, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.033224486 = weight(_text_:techniques in 1634) [ClassicSimilarity], result of:
          0.033224486 = score(doc=1634,freq=2.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.19468555 = fieldWeight in 1634, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.03125 = fieldNorm(doc=1634)
        0.01049738 = product of:
          0.02099476 = sum of:
            0.02099476 = weight(_text_:22 in 1634) [ClassicSimilarity], result of:
              0.02099476 = score(doc=1634,freq=2.0), product of:
                0.13565971 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038739666 = queryNorm
                0.15476047 = fieldWeight in 1634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1634)
          0.5 = coord(1/2)
      0.44444445 = coord(4/9)
    
    Abstract
    Purpose - Ontologies are prone to wide semantic variability due to subjective points of view of their composers. The purpose of this paper is to propose a new approach for maximal unification of diverse ontologies for controversial domains by their relations. Design/methodology/approach - Effective matching or unification of multiple ontologies for a specific domain is crucial for the success of many semantic web applications, such as semantic information retrieval and organization, document tagging, summarization and search. To this end, numerous automatic and semi-automatic techniques were proposed in the past decade that attempt to identify similar entities, mostly classes, in diverse ontologies for similar domains. Apparently, matching individual entities cannot result in full integration of ontologies' semantics without matching their inter-relations with all other-related classes (and instances). However, semantic matching of ontological relations still constitutes a major research challenge. Therefore, in this paper the authors propose a new paradigm for assessment of maximal possible matching and unification of ontological relations. To this end, several unification rules for ontological relations were devised based on ontological reference rules, and lexical and textual entailment. These rules were semi-automatically implemented to extend a given ontology with semantically matching relations from another ontology for a similar domain. Then, the ontologies were unified through these similar pairs of relations. The authors observe that these rules can be also facilitated to reveal the contradictory relations in different ontologies. Findings - To assess the feasibility of the approach two experiments were conducted with different sets of multiple personal ontologies on controversial domains constructed by trained subjects. The results for about 50 distinct ontology pairs demonstrate a good potential of the methodology for increasing inter-ontology agreement. Furthermore, the authors show that the presented methodology can lead to a complete unification of multiple semantically heterogeneous ontologies. Research limitations/implications - This is a conceptual study that presents a new approach for semantic unification of ontologies by a devised set of rules along with the initial experimental evidence of its feasibility and effectiveness. However, this methodology has to be fully automatically implemented and tested on a larger dataset in future research. Practical implications - This result has implication for semantic search, since a richer ontology, comprised of multiple aspects and viewpoints of the domain of knowledge, enhances discoverability and improves search results. Originality/value - To the best of the knowledge, this is the first study to examine and assess the maximal level of semantic relation-based ontology unification.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.5, S.494-518
  9. Chaudhury, S.; Mallik, A.; Ghosh, H.: Multimedia ontology : representation and applications (2016) 0.03
    0.029545952 = product of:
      0.08863785 = sum of:
        0.013190207 = weight(_text_:information in 2801) [ClassicSimilarity], result of:
          0.013190207 = score(doc=2801,freq=8.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.19395474 = fieldWeight in 2801, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2801)
        0.033917036 = weight(_text_:retrieval in 2801) [ClassicSimilarity], result of:
          0.033917036 = score(doc=2801,freq=6.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.28943354 = fieldWeight in 2801, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2801)
        0.04153061 = weight(_text_:techniques in 2801) [ClassicSimilarity], result of:
          0.04153061 = score(doc=2801,freq=2.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.24335694 = fieldWeight in 2801, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2801)
      0.33333334 = coord(3/9)
    
    Abstract
    The book covers multimedia ontology in heritage preservation with intellectual explorations of various themes of Indian cultural heritage. The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled. The book contains information that helps with building semantic, content-based search and retrieval engines and also with developing vertical application-specific search applications. It guides you in designing multimedia tools that aid in logical and conceptual organization of large amounts of multimedia data. As a practical demonstration, it showcases multimedia applications in cultural heritage preservation efforts and the creation of virtual museums. The book describes the limitations of existing ontology techniques in semantic multimedia data processing, as well as some open problems in the representations and applications of multimedia ontology. As an antidote, it introduces new ontology representation and reasoning schemes that overcome these limitations. The long, compiled efforts reflected in Multimedia Ontology: Representation and Applications are a signpost for new achievements and developments in efficiency and accessibility in the field.
    Footnote
    Rez. in: Annals of Library and Information Studies 62(2015) no.4, S.299-300 (A.K. Das)
    LCSH
    Information storage and retrieval systems
    Subject
    Information storage and retrieval systems
  10. Sakr, S.; Wylot, M.; Mutharaju, R.; Le-Phuoc, D.; Fundulaki, I.: Linked data : storing, querying, and reasoning (2018) 0.03
    0.029054176 = product of:
      0.087162524 = sum of:
        0.0074615083 = weight(_text_:information in 5329) [ClassicSimilarity], result of:
          0.0074615083 = score(doc=5329,freq=4.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.10971737 = fieldWeight in 5329, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=5329)
        0.022154516 = weight(_text_:retrieval in 5329) [ClassicSimilarity], result of:
          0.022154516 = score(doc=5329,freq=4.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.18905719 = fieldWeight in 5329, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=5329)
        0.057546496 = weight(_text_:techniques in 5329) [ClassicSimilarity], result of:
          0.057546496 = score(doc=5329,freq=6.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.33720526 = fieldWeight in 5329, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.03125 = fieldNorm(doc=5329)
      0.33333334 = coord(3/9)
    
    Abstract
    This book describes efficient and effective techniques for harnessing the power of Linked Data by tackling the various aspects of managing its growing volume: storing, querying, reasoning, provenance management and benchmarking. To this end, Chapter 1 introduces the main concepts of the Semantic Web and Linked Data and provides a roadmap for the book. Next, Chapter 2 briefly presents the basic concepts underpinning Linked Data technologies that are discussed in the book. Chapter 3 then offers an overview of various techniques and systems for centrally querying RDF datasets, and Chapter 4 outlines various techniques and systems for efficiently querying large RDF datasets in distributed environments. Subsequently, Chapter 5 explores how streaming requirements are addressed in current, state-of-the-art RDF stream data processing. Chapter 6 covers performance and scaling issues of distributed RDF reasoning systems, while Chapter 7 details benchmarks for RDF query engines and instance matching systems. Chapter 8 addresses the provenance management for Linked Data and presents the different provenance models developed. Lastly, Chapter 9 offers a brief summary, highlighting and providing insights into some of the open challenges and research directions. Providing an updated overview of methods, technologies and systems related to Linked Data this book is mainly intended for students and researchers who are interested in the Linked Data domain. It enables students to gain an understanding of the foundations and underpinning technologies and standards for Linked Data, while researchers benefit from the in-depth coverage of the emerging and ongoing advances in Linked Data storing, querying, reasoning, and provenance management systems. Further, it serves as a starting point to tackle the next research challenges in the domain of Linked Data management.
    LCSH
    Information storage and retrieval
    Subject
    Information storage and retrieval
  11. Reasoning Web : Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures (2017) 0.03
    0.026882272 = product of:
      0.08064681 = sum of:
        0.011423056 = weight(_text_:information in 3934) [ClassicSimilarity], result of:
          0.011423056 = score(doc=3934,freq=6.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.16796975 = fieldWeight in 3934, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3934)
        0.027693143 = weight(_text_:retrieval in 3934) [ClassicSimilarity], result of:
          0.027693143 = score(doc=3934,freq=4.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.23632148 = fieldWeight in 3934, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3934)
        0.04153061 = weight(_text_:techniques in 3934) [ClassicSimilarity], result of:
          0.04153061 = score(doc=3934,freq=2.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.24335694 = fieldWeight in 3934, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3934)
      0.33333334 = coord(3/9)
    
    Abstract
    This volume contains the lecture notes of the 13th Reasoning Web Summer School, RW 2017, held in London, UK, in July 2017. In 2017, the theme of the school was "Semantic Interoperability on the Web", which encompasses subjects such as data integration, open data management, reasoning over linked data, database to ontology mapping, query answering over ontologies, hybrid reasoning with rules and ontologies, and ontology-based dynamic systems. The papers of this volume focus on these topics and also address foundational reasoning techniques used in answer set programming and ontologies.
    LCSH
    Information storage and retrieval
    Series
    Lecture Notes in Computer Scienc;10370 )(Information Systems and Applications, incl. Internet/Web, and HCI
    Subject
    Information storage and retrieval
  12. Michon, J.: Biomedicine and the Semantic Web : a knowledge model for visual phenotype (2006) 0.03
    0.025286574 = product of:
      0.07585972 = sum of:
        0.0147471 = weight(_text_:information in 246) [ClassicSimilarity], result of:
          0.0147471 = score(doc=246,freq=10.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.21684799 = fieldWeight in 246, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=246)
        0.01958201 = weight(_text_:retrieval in 246) [ClassicSimilarity], result of:
          0.01958201 = score(doc=246,freq=2.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.16710453 = fieldWeight in 246, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=246)
        0.04153061 = weight(_text_:techniques in 246) [ClassicSimilarity], result of:
          0.04153061 = score(doc=246,freq=2.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.24335694 = fieldWeight in 246, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0390625 = fieldNorm(doc=246)
      0.33333334 = coord(3/9)
    
    Abstract
    Semantic Web tools provide new and significant opportunities for organizing and improving the utility of biomedical information. As librarians become more involved with biomedical information, it is important for them, particularly catalogers, to be part of research teams that are employing these techniques and developing a high level interoperable biomedical infrastructure. To illustrate these principles, we used Semantic Web tools to create a knowledge model for human visual phenotypes (observable characteristics). This is an important foundation for generating associations between genomics and clinical medicine. In turn this can allow customized medical therapies and provide insights into the molecular basis of disease. The knowledge model incorporates a wide variety of clinical and genomic data including examination findings, demographics, laboratory tests, imaging and variations in DNA sequence. Information organization, storage and retrieval are facilitated through the use of metadata and the ability to make computable statements in the visual science domain. This paper presents our work, discusses the value of Semantic Web technologies in biomedicine, and identifies several important roles that library and information scientists can play in developing a more powerful biomedical information infrastructure.
  13. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.02
    0.023126636 = product of:
      0.0693799 = sum of:
        0.008724502 = weight(_text_:information in 4232) [ClassicSimilarity], result of:
          0.008724502 = score(doc=4232,freq=14.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.128289 = fieldWeight in 4232, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
        0.009791005 = weight(_text_:retrieval in 4232) [ClassicSimilarity], result of:
          0.009791005 = score(doc=4232,freq=2.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.08355226 = fieldWeight in 4232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
        0.050864395 = weight(_text_:techniques in 4232) [ClassicSimilarity], result of:
          0.050864395 = score(doc=4232,freq=12.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.29805014 = fieldWeight in 4232, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
      0.33333334 = coord(3/9)
    
    Abstract
    After the launch of the World Wide Web, it became clear that searching documentson the Web would not be trivial. Well-known engines to search the web, like Google, focus on search in web documents using keywords. The documents are structured and indexed to ensure keywords match documents as accurately as possible. However, searching by keywords does not always suice. It is oen the case that users do not know exactly how to formulate the search query or which keywords guarantee retrieving the most relevant documents. Besides that, it occurs that users rather want to browse information than looking up something specific. It turned out that there is need for systems that enable more interactivity and facilitate the gradual refinement of search queries to explore the Web. Users expect more from the Web because the short keyword-based queries they pose during search, do not suffice for all cases. On top of that, the Web is changing structurally. The Web comprises, apart from a collection of documents, more and more linked data, pieces of information structured so they can be processed by machines. The consequently applied semantics allow users to exactly indicate machines their search intentions. This is made possible by describing data following controlled vocabularies, concept lists composed by experts, published uniquely identifiable on the Web. Even so, it is still not trivial to explore data on the Web. There is a large variety of vocabularies and various data sources use different terms to identify the same concepts.
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. eries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research.
    When we speak about finding relationships between resources, it is necessary to dive deeper in the structure. The graph structure of linked data where the semantics give meaning to the relationships between resources enable the execution of pathfinding algorithms. The assigned weights and heuristics are base components of such algorithms and ultimately define (the order) which resources are included in a path. These paths explain indirect connections between resources. Our third technique proposes an algorithm that optimizes the choice of resources in terms of serendipity. Some optimizations guard the consistence of candidate-paths where the coherence of consecutive connections is maximized to avoid trivial and too arbitrary paths. The implementation uses the A* algorithm, the de-facto reference when it comes to heuristically optimized minimal cost paths. The effectiveness of paths was measured based on common automatic metrics and surveys where the users could indicate their preference for paths, generated each time in a different way. Finally, all our techniques are applied to a use case about publications in digital libraries where they are aligned with information about scientific conferences and researchers. The application to this use case is a practical example because the different aspects of exploratory search come together. In fact, the techniques also evolved from the experiences when implementing the use case. Practical details about the semantic model are explained and the implementation of the search system is clarified module by module. The evaluation positions the result, a prototype of a tool to explore scientific publications, researchers and conferences next to some important alternatives.
  14. Semantic search over the Web (2012) 0.02
    0.022642737 = product of:
      0.06792821 = sum of:
        0.005276083 = weight(_text_:information in 411) [ClassicSimilarity], result of:
          0.005276083 = score(doc=411,freq=2.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.0775819 = fieldWeight in 411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=411)
        0.015665608 = weight(_text_:retrieval in 411) [ClassicSimilarity], result of:
          0.015665608 = score(doc=411,freq=2.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.13368362 = fieldWeight in 411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=411)
        0.046986517 = weight(_text_:techniques in 411) [ClassicSimilarity], result of:
          0.046986517 = score(doc=411,freq=4.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.27532694 = fieldWeight in 411, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.03125 = fieldNorm(doc=411)
      0.33333334 = coord(3/9)
    
    Abstract
    The Web has become the world's largest database, with search being the main tool that allows organizations and individuals to exploit its huge amount of information. Search on the Web has been traditionally based on textual and structural similarities, ignoring to a large degree the semantic dimension, i.e., understanding the meaning of the query and of the document content. Combining search and semantics gives birth to the idea of semantic search. Traditional search engines have already advertised some semantic dimensions. Some of them, for instance, can enhance their generated result sets with documents that are semantically related to the query terms even though they may not include these terms. Nevertheless, the exploitation of the semantic search has not yet reached its full potential. In this book, Roberto De Virgilio, Francesco Guerra and Yannis Velegrakis present an extensive overview of the work done in Semantic Search and other related areas. They explore different technologies and solutions in depth, making their collection a valuable and stimulating reading for both academic and industrial researchers. The book is divided into three parts. The first introduces the readers to the basic notions of the Web of Data. It describes the different kinds of data that exist, their topology, and their storing and indexing techniques. The second part is dedicated to Web Search. It presents different types of search, like the exploratory or the path-oriented, alongside methods for their efficient and effective implementation. Other related topics included in this part are the use of uncertainty in query answering, the exploitation of ontologies, and the use of semantics in mashup design and operation. The focus of the third part is on linked data, and more specifically, on applying ideas originating in recommender systems on linked data management, and on techniques for the efficiently querying answering on linked data.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  15. Fernández, M.; Cantador, I.; López, V.; Vallet, D.; Castells, P.; Motta, E.: Semantically enhanced Information Retrieval : an ontology-based approach (2011) 0.02
    0.020946836 = product of:
      0.06284051 = sum of:
        0.0074615083 = weight(_text_:information in 230) [ClassicSimilarity], result of:
          0.0074615083 = score(doc=230,freq=4.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.10971737 = fieldWeight in 230, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=230)
        0.022154516 = weight(_text_:retrieval in 230) [ClassicSimilarity], result of:
          0.022154516 = score(doc=230,freq=4.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.18905719 = fieldWeight in 230, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=230)
        0.033224486 = weight(_text_:techniques in 230) [ClassicSimilarity], result of:
          0.033224486 = score(doc=230,freq=2.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.19468555 = fieldWeight in 230, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.03125 = fieldNorm(doc=230)
      0.33333334 = coord(3/9)
    
    Abstract
    Currently, techniques for content description and query processing in Information Retrieval (IR) are based on keywords, and therefore provide limited capabilities to capture the conceptualizations associated with user needs and contents. Aiming to solve the limitations of keyword-based models, the idea of conceptual search, understood as searching by meanings rather than literal strings, has been the focus of a wide body of research in the IR field. More recently, it has been used as a prototypical scenario (or even envisioned as a potential "killer app") in the Semantic Web (SW) vision, since its emergence in the late nineties. However, current approaches to semantic search developed in the SW area have not yet taken full advantage of the acquired knowledge, accumulated experience, and technological sophistication achieved through several decades of work in the IR field. Starting from this position, this work investigates the definition of an ontology-based IR model, oriented to the exploitation of domain Knowledge Bases to support semantic search capabilities in large document repositories, stressing on the one hand the use of fully fledged ontologies in the semantic-based perspective, and on the other hand the consideration of unstructured content as the target search space. The major contribution of this work is an innovative, comprehensive semantic search model, which extends the classic IR model, addresses the challenges of the massive and heterogeneous Web environment, and integrates the benefits of both keyword and semantic-based search. Additional contributions include: an innovative rank fusion technique that minimizes the undesired effects of knowledge sparseness on the yet juvenile SW, and the creation of a large-scale evaluation benchmark, based on TREC IR evaluation standards, which allows a rigorous comparison between IR and SW approaches. Conducted experiments show that our semantic search model obtained comparable and better performance results (in terms of MAP and P@10 values) than the best TREC automatic system.
  16. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.02
    0.020592501 = product of:
      0.061777502 = sum of:
        0.015992278 = weight(_text_:information in 3283) [ClassicSimilarity], result of:
          0.015992278 = score(doc=3283,freq=6.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.23515764 = fieldWeight in 3283, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3283)
        0.027414814 = weight(_text_:retrieval in 3283) [ClassicSimilarity], result of:
          0.027414814 = score(doc=3283,freq=2.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.23394634 = fieldWeight in 3283, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3283)
        0.018370414 = product of:
          0.03674083 = sum of:
            0.03674083 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.03674083 = score(doc=3283,freq=2.0), product of:
                0.13565971 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038739666 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    This book constitutes the refereed proceedings of the 10th Metadata and Semantics Research Conference, MTSR 2016, held in Göttingen, Germany, in November 2016. The 26 full papers and 6 short papers presented were carefully reviewed and selected from 67 submissions. The papers are organized in several sessions and tracks: Digital Libraries, Information Retrieval, Linked and Social Data, Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures, Metadata and Semantics for Agriculture, Food and Environment, Metadata and Semantics for Cultural Collections and Applications, European and National Projects.
    Series
    Communications in computer and information science; 672
  17. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.02
    0.019161299 = product of:
      0.086225845 = sum of:
        0.07047977 = weight(_text_:techniques in 2418) [ClassicSimilarity], result of:
          0.07047977 = score(doc=2418,freq=4.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.4129904 = fieldWeight in 2418, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.046875 = fieldNorm(doc=2418)
        0.01574607 = product of:
          0.03149214 = sum of:
            0.03149214 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
              0.03149214 = score(doc=2418,freq=2.0), product of:
                0.13565971 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038739666 = queryNorm
                0.23214069 = fieldWeight in 2418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Integrated digital access to multiple collections is a prominent issue for many Cultural Heritage institutions. The metadata describing diverse collections must be interoperable, which requires aligning the controlled vocabularies that are used to annotate objects from these collections. In this paper, we present an experiment where we match the vocabularies of two collections by applying the Knowledge Representation techniques established in recent Semantic Web research. We discuss the steps that are required for such matching, namely formalising the initial resources using Semantic Web languages, and running ontology mapping tools on the resulting representations. In addition, we present a prototype that enables the user to browse the two collections using the obtained alignment while still providing her with the original vocabulary structures.
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
  18. Blanco, L.; Bronzi, M.; Crescenzi, V.; Merialdo, P.; Papotti, P.: Flint: from Web pages to probabilistic semantic data (2012) 0.02
    0.018916296 = product of:
      0.08512333 = sum of:
        0.013190207 = weight(_text_:information in 437) [ClassicSimilarity], result of:
          0.013190207 = score(doc=437,freq=8.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.19395474 = fieldWeight in 437, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=437)
        0.07193312 = weight(_text_:techniques in 437) [ClassicSimilarity], result of:
          0.07193312 = score(doc=437,freq=6.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.42150658 = fieldWeight in 437, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0390625 = fieldNorm(doc=437)
      0.22222222 = coord(2/9)
    
    Abstract
    The Web is a surprisingly extensive source of information: it offers a huge number of sites containing data about a disparate range of topics. Although Web pages are built for human fruition, not for automatic processing of the data, we observe that an increasing number of Web sites deliver pages containing structured information about recognizable concepts, relevant to specific application domains, such as movies, finance, sport, products, etc. The development of scalable techniques to discover, extract, and integrate data from fairly structured large corpora available on the Web is a challenging issue, because to face the Web scale, these activities should be accomplished automatically by domain-independent techniques. To cope with the complexity and the heterogeneity of Web data, state-of-the-art approaches focus on information organized according to specific patterns that frequently occur on the Web. Meaningful examples are WebTables, which focuses on data published in HTML tables, and information extraction systems, such as TextRunner, which exploits lexical-syntactic patterns. As noticed by Cafarella et al., even if a small fraction of the Web is organized according to these patterns, due to the Web scale, the amount of data involved is impressive. In this chapter, we focus on methods and techniques to wring out value from the data delivered by large data-intensive Web sites.
  19. Faaborg, A.; Lagoze, C.: Semantic browsing (2003) 0.02
    0.018339459 = product of:
      0.055018373 = sum of:
        0.009233146 = weight(_text_:information in 1026) [ClassicSimilarity], result of:
          0.009233146 = score(doc=1026,freq=2.0), product of:
            0.06800663 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.038739666 = queryNorm
            0.13576832 = fieldWeight in 1026, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.027414814 = weight(_text_:retrieval in 1026) [ClassicSimilarity], result of:
          0.027414814 = score(doc=1026,freq=2.0), product of:
            0.1171842 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.038739666 = queryNorm
            0.23394634 = fieldWeight in 1026, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.018370414 = product of:
          0.03674083 = sum of:
            0.03674083 = weight(_text_:22 in 1026) [ClassicSimilarity], result of:
              0.03674083 = score(doc=1026,freq=2.0), product of:
                0.13565971 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038739666 = queryNorm
                0.2708308 = fieldWeight in 1026, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1026)
          0.5 = coord(1/2)
      0.33333334 = coord(3/9)
    
    Abstract
    We have created software applications that allow users to both author and use Semantic Web metadata. To create and use a layer of semantic content on top of the existing Web, we have (1) implemented a user interface that expedites the task of attributing metadata to resources on the Web, and (2) augmented a Web browser to leverage this semantic metadata to provide relevant information and tasks to the user. This project provides a framework for annotating and reorganizing existing files, pages, and sites on the Web that is similar to Vannevar Bushrsquos original concepts of trail blazing and associative indexing.
    Source
    Research and advanced technology for digital libraries : 7th European Conference, proceedings / ECDL 2003, Trondheim, Norway, August 17-22, 2003
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  20. Malmsten, M.: Making a library catalogue part of the Semantic Web (2008) 0.02
    0.017002948 = product of:
      0.07651326 = sum of:
        0.05814285 = weight(_text_:techniques in 2640) [ClassicSimilarity], result of:
          0.05814285 = score(doc=2640,freq=2.0), product of:
            0.17065717 = queryWeight, product of:
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.038739666 = queryNorm
            0.3406997 = fieldWeight in 2640, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.405231 = idf(docFreq=1467, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2640)
        0.018370414 = product of:
          0.03674083 = sum of:
            0.03674083 = weight(_text_:22 in 2640) [ClassicSimilarity], result of:
              0.03674083 = score(doc=2640,freq=2.0), product of:
                0.13565971 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038739666 = queryNorm
                0.2708308 = fieldWeight in 2640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2640)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Library catalogues contain an enormous amount of structured, high-quality data, however, this data is generally not made available to semantic web applications. In this paper we describe the tools and techniques used to make the Swedish Union Catalogue (LIBRIS) part of the Semantic Web and Linked Data. The focus is on links to and between resources and the mechanisms used to make data available, rather than perfect description of the individual resources. We also present a method of creating links between records of the same work.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas

Years

Languages

  • e 192
  • d 37
  • f 1
  • More… Less…

Types

  • a 137
  • el 59
  • m 48
  • s 22
  • x 9
  • n 6
  • r 2
  • More… Less…

Subjects

Classifications