Search (76 results, page 1 of 4)

  • × language_ss:"e"
  • × theme_ss:"Wissensrepräsentation"
  1. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.14
    0.14457956 = product of:
      0.28915912 = sum of:
        0.07228978 = product of:
          0.21686934 = sum of:
            0.21686934 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.21686934 = score(doc=400,freq=2.0), product of:
                0.38587612 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.045514934 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.33333334 = coord(1/3)
        0.21686934 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.21686934 = score(doc=400,freq=2.0), product of:
            0.38587612 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.045514934 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
      0.5 = coord(2/4)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  2. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.13
    0.12632978 = product of:
      0.25265956 = sum of:
        0.048193187 = product of:
          0.14457956 = sum of:
            0.14457956 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.14457956 = score(doc=5820,freq=2.0), product of:
                0.38587612 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.045514934 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
        0.20446637 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.20446637 = score(doc=5820,freq=4.0), product of:
            0.38587612 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.045514934 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.5 = coord(2/4)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  3. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.10
    0.09638637 = product of:
      0.19277275 = sum of:
        0.048193187 = product of:
          0.14457956 = sum of:
            0.14457956 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.14457956 = score(doc=701,freq=2.0), product of:
                0.38587612 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.045514934 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.14457956 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.14457956 = score(doc=701,freq=2.0), product of:
            0.38587612 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.045514934 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.5 = coord(2/4)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  4. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.03
    0.029812116 = product of:
      0.119248465 = sum of:
        0.119248465 = sum of:
          0.08224859 = weight(_text_:software in 4820) [ClassicSimilarity], result of:
            0.08224859 = score(doc=4820,freq=6.0), product of:
              0.18056466 = queryWeight, product of:
                3.9671519 = idf(docFreq=2274, maxDocs=44218)
                0.045514934 = queryNorm
              0.4555077 = fieldWeight in 4820, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.9671519 = idf(docFreq=2274, maxDocs=44218)
                0.046875 = fieldNorm(doc=4820)
          0.03699987 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
            0.03699987 = score(doc=4820,freq=2.0), product of:
              0.15938555 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045514934 = queryNorm
              0.23214069 = fieldWeight in 4820, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4820)
      0.25 = coord(1/4)
    
    Abstract
    One of the major problems facing systems for Computer Aided Design (CAD), Architecture Engineering and Construction (AEC) and Geographic Information Systems (GIS) applications today is the lack of interoperability among the various systems. When integrating software applications, substantial di culties can arise in translating information from one application to the other. In this paper, we focus on semantic di culties that arise in software integration. Applications may use di erent terminologies to describe the same domain. Even when appli-cations use the same terminology, they often associate di erent semantics with the terms. This obstructs information exchange among applications. To cir-cumvent this obstacle, we need some way of explicitly specifying the semantics for each terminology in an unambiguous fashion. Ontologies can provide such specification. It will be the task of this paper to explain what ontologies are and how they can be used to facilitate interoperability between software systems used in computer aided design, architecture engineering and construction, and geographic information processing.
    Date
    3.12.2016 18:39:22
  5. Marcondes, C.H.; Costa, L.C da.: ¬A model to represent and process scientific knowledge in biomedical articles with semantic Web technologies (2016) 0.02
    0.017601274 = product of:
      0.070405096 = sum of:
        0.070405096 = sum of:
          0.03957187 = weight(_text_:software in 2829) [ClassicSimilarity], result of:
            0.03957187 = score(doc=2829,freq=2.0), product of:
              0.18056466 = queryWeight, product of:
                3.9671519 = idf(docFreq=2274, maxDocs=44218)
                0.045514934 = queryNorm
              0.21915624 = fieldWeight in 2829, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.9671519 = idf(docFreq=2274, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2829)
          0.030833228 = weight(_text_:22 in 2829) [ClassicSimilarity], result of:
            0.030833228 = score(doc=2829,freq=2.0), product of:
              0.15938555 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045514934 = queryNorm
              0.19345059 = fieldWeight in 2829, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2829)
      0.25 = coord(1/4)
    
    Abstract
    Knowledge organization faces the challenge of managing the amount of knowledge available on the Web. Published literature in biomedical sciences is a huge source of knowledge, which can only efficiently be managed through automatic methods. The conventional channel for reporting scientific results is Web electronic publishing. Despite its advances, scientific articles are still published in print formats such as portable document format (PDF). Semantic Web and Linked Data technologies provides new opportunities for communicating, sharing, and integrating scientific knowledge that can overcome the limitations of the current print format. Here is proposed a semantic model of scholarly electronic articles in biomedical sciences that can overcome the limitations of traditional flat records formats. Scientific knowledge consists of claims made throughout article texts, especially when semantic elements such as questions, hypotheses and conclusions are stated. These elements, although having different roles, express relationships between phenomena. Once such knowledge units are extracted and represented with technologies such as RDF (Resource Description Framework) and linked data, they may be integrated in reasoning chains. Thereby, the results of scientific research can be published and shared in structured formats, enabling crawling by software agents, semantic retrieval, knowledge reuse, validation of scientific results, and identification of traces of scientific discoveries.
    Date
    12. 3.2016 13:17:22
  6. Innovations and advanced techniques in systems, computing sciences and software engineering (2008) 0.02
    0.017135125 = product of:
      0.0685405 = sum of:
        0.0685405 = product of:
          0.137081 = sum of:
            0.137081 = weight(_text_:software in 4319) [ClassicSimilarity], result of:
              0.137081 = score(doc=4319,freq=24.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.75917953 = fieldWeight in 4319, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4319)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Software Engineering, Computer Engineering, and Systems Engineering and Sciences. Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering includes selected papers form the conference proceedings of the International Conference on Systems, Computing Sciences and Software Engineering (SCSS 2007) which was part of the International Joint Conferences on Computer, Information and Systems Sciences and Engineering (CISSE 2007).
    Content
    Inhalt: Image and Pattern Recognition: Compression, Image processing, Signal Processing Architectures, Signal Processing for Communication, Signal Processing Implementation, Speech Compression, and Video Coding Architectures. Languages and Systems: Algorithms, Databases, Embedded Systems and Applications, File Systems and I/O, Geographical Information Systems, Kernel and OS Structures, Knowledge Based Systems, Modeling and Simulation, Object Based Software Engineering, Programming Languages, and Programming Models and tools. Parallel Processing: Distributed Scheduling, Multiprocessing, Real-time Systems, Simulation Modeling and Development, and Web Applications. New trends in computing: Computers for People of Special Needs, Fuzzy Inference, Human Computer Interaction, Incremental Learning, Internet-based Computing Models, Machine Intelligence, Natural Language Processing, Neural Networks, and Online Decision Support System
    LCSH
    Software Engineering/Programming and Operating Systems
    Software engineering
    RSWK
    Computerarchitektur / Software Engineering / Telekommunikation / Online-Publikation
    Subject
    Computerarchitektur / Software Engineering / Telekommunikation / Online-Publikation
    Software Engineering/Programming and Operating Systems
    Software engineering
  7. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.02
    0.016424723 = product of:
      0.06569889 = sum of:
        0.06569889 = weight(_text_:soziale in 4515) [ClassicSimilarity], result of:
          0.06569889 = score(doc=4515,freq=2.0), product of:
            0.2780798 = queryWeight, product of:
              6.1096387 = idf(docFreq=266, maxDocs=44218)
              0.045514934 = queryNorm
            0.23625913 = fieldWeight in 4515, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.1096387 = idf(docFreq=266, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
      0.25 = coord(1/4)
    
    Footnote
    Rez. in: iwp 62(2011) H.4, S.205-206 (C. Carstens): "Welche Arten der Wissensrepräsentation existieren im Web, wie ausgeprägt sind semantische Strukturen in diesem Kontext, und wie können soziale Aktivitäten im Sinne des Web 2.0 zur Strukturierung von Wissen im Web beitragen? Diesen Fragen widmet sich Wellers Buch mit dem Titel Knowledge Representation in the Social Semantic Web. Der Begriff Social Semantic Web spielt einerseits auf die semantische Strukturierung von Daten im Sinne des Semantic Web an und deutet andererseits auf die zunehmend kollaborative Inhaltserstellung im Social Web hin. Weller greift die Entwicklungen in diesen beiden Bereichen auf und beleuchtet die Möglichkeiten und Herausforderungen, die aus der Kombination der Aktivitäten im Semantic Web und im Social Web entstehen. Der Fokus des Buches liegt dabei primär auf den konzeptuellen Herausforderungen, die sich in diesem Kontext ergeben. So strebt die originäre Vision des Semantic Web die Annotation aller Webinhalte mit ausdrucksstarken, hochformalisierten Ontologien an. Im Social Web hingegen werden große Mengen an Daten von Nutzern erstellt, die häufig mithilfe von unkontrollierten Tags in Folksonomies annotiert werden. Weller sieht in derartigen kollaborativ erstellten Inhalten und Annotationen großes Potenzial für die semantische Indexierung, eine wichtige Voraussetzung für das Retrieval im Web. Das Hauptinteresse des Buches besteht daher darin, eine Brücke zwischen den Wissensrepräsentations-Methoden im Social Web und im Semantic Web zu schlagen. Um dieser Fragestellung nachzugehen, gliedert sich das Buch in drei Teile. . . .
  8. Information and communication technologies : international conference; proceedings / ICT 2010, Kochi, Kerala, India, September 7 - 9, 2010 (2010) 0.01
    0.009793539 = product of:
      0.039174154 = sum of:
        0.039174154 = product of:
          0.07834831 = sum of:
            0.07834831 = weight(_text_:software in 4784) [ClassicSimilarity], result of:
              0.07834831 = score(doc=4784,freq=4.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.43390724 = fieldWeight in 4784, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4784)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    LCSH
    Computer software
    Subject
    Computer software
  9. Schreiber, G.; Amin, A.; Assem, M. van; Boer, V. de; Hardman, L.; Hildebrand, M.; Omelayenko, B.; Ossenbruggen, J. van; Wielemaker, J.; Wielinga, B.; Tordai, A.; Aroyoa, L.: Semantic annotation and search of cultural-heritage collections : the MultimediaN E-Culture demonstrator (2008) 0.01
    0.008394462 = product of:
      0.03357785 = sum of:
        0.03357785 = product of:
          0.0671557 = sum of:
            0.0671557 = weight(_text_:software in 4646) [ClassicSimilarity], result of:
              0.0671557 = score(doc=4646,freq=4.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.3719205 = fieldWeight in 4646, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4646)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    In this article we describe a SemanticWeb application for semantic annotation and search in large virtual collections of cultural-heritage objects, indexed with multiple vocabularies. During the annotation phase we harvest, enrich and align collection metadata and vocabularies. The semantic-search facilities support keyword-based queries of the graph (currently 20M triples), resulting in semantically grouped result clusters, all representing potential semantic matches of the original query. We show two sample search scenario's. The annotation and search software is open source and is already being used by third parties. All software is based on establishedWeb standards, in particular HTML/XML, CSS, RDF/OWL, SPARQL and JavaScript.
  10. ¬The Semantic Web : research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings (2005) 0.01
    0.008394462 = product of:
      0.03357785 = sum of:
        0.03357785 = product of:
          0.0671557 = sum of:
            0.0671557 = weight(_text_:software in 439) [ClassicSimilarity], result of:
              0.0671557 = score(doc=439,freq=4.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.3719205 = fieldWeight in 439, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.046875 = fieldNorm(doc=439)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    LCSH
    Software engineering
    Subject
    Software engineering
  11. Resource Description Framework (RDF) (2004) 0.01
    0.007914375 = product of:
      0.0316575 = sum of:
        0.0316575 = product of:
          0.063315 = sum of:
            0.063315 = weight(_text_:software in 3063) [ClassicSimilarity], result of:
              0.063315 = score(doc=3063,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.35064998 = fieldWeight in 3063, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3063)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The Resource Description Framework (RDF) integrates a variety of applications from library catalogs and world-wide directories to syndication and aggregation of news, software, and content to personal collections of music, photos, and events using XML as an interchange syntax. The RDF specifications provide a lightweight ontology system to support the exchange of knowledge on the Web. The W3C Semantic Web Activity Statement explains W3C's plans for RDF, including the RDF Core WG, Web Ontology and the RDF Interest Group.
  12. OWL Web Ontology Language Use Cases and Requirements (2004) 0.01
    0.007914375 = product of:
      0.0316575 = sum of:
        0.0316575 = product of:
          0.063315 = sum of:
            0.063315 = weight(_text_:software in 4686) [ClassicSimilarity], result of:
              0.063315 = score(doc=4686,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.35064998 = fieldWeight in 4686, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4686)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    This document specifies usage scenarios, goals and requirements for a web ontology language. An ontology formally defines a common set of terms that are used to describe and represent a domain. Ontologies can be used by automated tools to power advanced services such as more accurate web search, intelligent software agents and knowledge management.
  13. Schmitz-Esser, W.: Language of general communication and concept compatibility (1996) 0.01
    0.007708307 = product of:
      0.030833228 = sum of:
        0.030833228 = product of:
          0.061666455 = sum of:
            0.061666455 = weight(_text_:22 in 6089) [ClassicSimilarity], result of:
              0.061666455 = score(doc=6089,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.38690117 = fieldWeight in 6089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=6089)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Pages
    S.11-22
  14. Tudhope, D.; Hodge, G.: Terminology registries (2007) 0.01
    0.007708307 = product of:
      0.030833228 = sum of:
        0.030833228 = product of:
          0.061666455 = sum of:
            0.061666455 = weight(_text_:22 in 539) [ClassicSimilarity], result of:
              0.061666455 = score(doc=539,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.38690117 = fieldWeight in 539, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=539)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    26.12.2011 13:22:07
  15. Hodgson, J.P.E.: Knowledge representation and language in AI (1991) 0.01
    0.006995385 = product of:
      0.02798154 = sum of:
        0.02798154 = product of:
          0.05596308 = sum of:
            0.05596308 = weight(_text_:software in 1529) [ClassicSimilarity], result of:
              0.05596308 = score(doc=1529,freq=4.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.30993375 = fieldWeight in 1529, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1529)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Classification
    ST 285 Informatik / Monographien / Software und -entwicklung / Computer supported cooperative work (CSCW), Groupware
    RVK
    ST 285 Informatik / Monographien / Software und -entwicklung / Computer supported cooperative work (CSCW), Groupware
  16. Mainzer, K.: ¬The emergence of self-conscious systems : from symbolic AI to embodied robotics (2014) 0.01
    0.006995385 = product of:
      0.02798154 = sum of:
        0.02798154 = product of:
          0.05596308 = sum of:
            0.05596308 = weight(_text_:software in 3398) [ClassicSimilarity], result of:
              0.05596308 = score(doc=3398,freq=4.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.30993375 = fieldWeight in 3398, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3398)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Knowledge representation, which is today used in database applications, artificial intelligence (AI), software engineering and many other disciplines of computer science has deep roots in logic and philosophy. In the beginning, there was Aristotle (384 bc-322 bc) who developed logic as a precise method for reasoning about knowledge. Syllogisms were introduced as formal patterns for representing special figures of logical deductions. According to Aristotle, the subject of ontology is the study of categories of things that exist or may exist in some domain. In modern times, Descartes considered the human brain as a store of knowledge representation. Recognition was made possible by an isomorphic correspondence between internal geometrical representations (ideae) and external situations and events. Leibniz was deeply influenced by these traditions. In his mathesis universalis, he required a universal formal language (lingua universalis) to represent human thinking by calculation procedures and to implement them by means of mechanical calculating machines. An ars iudicandi should allow every problem to be decided by an algorithm after representation in numeric symbols. An ars iveniendi should enable users to seek and enumerate desired data and solutions of problems. In the age of mechanics, knowledge representation was reduced to mechanical calculation procedures. In the twentieth century, computational cognitivism arose in the wake of Turing's theory of computability. In its functionalism, the hardware of a computer is related to the wetware of the human brain. The mind is understood as the software of a computer.
  17. Lacasta, J.; Nogueras-Iso, J.; López-Pellicer, F.J.; Muro-Medrano, P.R.; Zarazaga-Soria, F.J.: ThManager : an open source tool for creating and visualizing SKOS (2007) 0.01
    0.006925077 = product of:
      0.027700309 = sum of:
        0.027700309 = product of:
          0.055400617 = sum of:
            0.055400617 = weight(_text_:software in 2349) [ClassicSimilarity], result of:
              0.055400617 = score(doc=2349,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.30681872 = fieldWeight in 2349, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2349)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Content
    Vgl. Software-Download unter: http://thmanager.sourceforge.net/.
  18. Castellanos Ardila, J.P.: Investigation of an OSLC-domain targeting ISO 26262 : focus on the left side of the software V-model (2016) 0.01
    0.0068540494 = product of:
      0.027416198 = sum of:
        0.027416198 = product of:
          0.054832395 = sum of:
            0.054832395 = weight(_text_:software in 5819) [ClassicSimilarity], result of:
              0.054832395 = score(doc=5819,freq=6.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.3036718 = fieldWeight in 5819, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5819)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Industries have adopted a standardized set of practices for developing their products. In the automotive domain, the provision of safety-compliant systems is guided by ISO 26262, a standard that specifies a set of requirements and recommendations for developing automotive safety-critical systems. For being in compliance with ISO 26262, the safety lifecycle proposed by the standard must be included in the development process of a vehicle. Besides, a safety case that shows that the system is acceptably safe has to be provided. The provision of a safety case implies the execution of a precise documentation process. This process makes sure that the work products are available and traceable. Further, the documentation management is defined in the standard as a mandatory activity and guidelines are proposed/imposed for its elaboration. It would be appropriate to point out that a well-documented safety lifecycle will provide the necessary inputs for the generation of an ISO 26262-compliant safety case. The OSLC (Open Services for Lifecycle Collaboration) standard and the maturing stack of semantic web technologies represent a promising integration platform for enabling semantic interoperability between the tools involved in the safety lifecycle. Tools for requirements, architecture, development management, among others, are expected to interact and shared data with the help of domains specifications created in OSLC. This thesis proposes the creation of an OSLC tool-chain infrastructure for sharing safety-related information, where fragments of safety information can be generated. The steps carried out during the elaboration of this master thesis consist in the identification, representation, and shaping of the RDF resources needed for the creation of a safety case. The focus of the thesis is limited to a tiny portion of the ISO 26262 left-hand side of the V-model, more exactly part 6 clause 8 of the standard: Software unit design and implementation. Regardless of the use of a restricted portion of the standard during the execution of this thesis, the findings can be extended to other parts, and the conclusions can be generalize. This master thesis is considered one of the first steps towards the provision of an OSLC-based and ISO 26262-compliant methodological approach for representing and shaping the work products resulting from the execution of the safety lifecycle, documentation required in the conformation of an ISO-compliant safety case.
    Footnote
    Thesis for: Master of Computer Science with Specialization in Software Engineering. Advisor: Barbara Gallina.
  19. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.01
    0.0065407157 = product of:
      0.026162863 = sum of:
        0.026162863 = product of:
          0.052325726 = sum of:
            0.052325726 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.052325726 = score(doc=3355,freq=4.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  20. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.01
    0.0061666453 = product of:
      0.024666581 = sum of:
        0.024666581 = product of:
          0.049333163 = sum of:
            0.049333163 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.049333163 = score(doc=3376,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    31. 7.2010 16:58:22

Authors

Years

Types

  • a 50
  • el 18
  • m 9
  • x 5
  • s 4
  • n 3
  • More… Less…

Subjects