Search (48 results, page 1 of 3)

  • × type_ss:"a"
  • × theme_ss:"Automatisches Indexieren"
  1. Renz, M.: Automatische Inhaltserschließung im Zeichen von Wissensmanagement (2001) 0.02
    0.024641784 = product of:
      0.098567136 = sum of:
        0.098567136 = sum of:
          0.055400617 = weight(_text_:software in 5671) [ClassicSimilarity], result of:
            0.055400617 = score(doc=5671,freq=2.0), product of:
              0.18056466 = queryWeight, product of:
                3.9671519 = idf(docFreq=2274, maxDocs=44218)
                0.045514934 = queryNorm
              0.30681872 = fieldWeight in 5671, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.9671519 = idf(docFreq=2274, maxDocs=44218)
                0.0546875 = fieldNorm(doc=5671)
          0.04316652 = weight(_text_:22 in 5671) [ClassicSimilarity], result of:
            0.04316652 = score(doc=5671,freq=2.0), product of:
              0.15938555 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045514934 = queryNorm
              0.2708308 = fieldWeight in 5671, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=5671)
      0.25 = coord(1/4)
    
    Abstract
    Methoden der automatischen Inhaltserschließung werden seit mehr als 30 Jahren entwickelt, ohne in luD-Kreisen auf merkliche Akzeptanz zu stoßen. Gegenwärtig führen jedoch die steigende Informationsflut und der Bedarf an effizienten Zugriffsverfahren im Informations- und Wissensmanagement in breiten Anwenderkreisen zu einem wachsenden Interesse an diesen Methoden, zu verstärkten Anstrengungen in Forschung und Entwicklung und zu neuen Produkten. In diesem Beitrag werden verschiedene Ansätze zu intelligentem und inhaltsbasiertem Retrieval und zur automatischen Inhaltserschließung diskutiert sowie kommerziell vertriebene Softwarewerkzeuge und Lösungen präsentiert. Abschließend wird festgestellt, dass in naher Zukunft mit einer zunehmenden Automatisierung von bestimmten Komponenten des Informations- und Wissensmanagements zu rechnen ist, indem Software-Werkzeuge zur automatischen Inhaltserschließung in den Workflow integriert werden
    Date
    22. 3.2001 13:14:48
  2. Ward, M.L.: ¬The future of the human indexer (1996) 0.02
    0.021121528 = product of:
      0.08448611 = sum of:
        0.08448611 = sum of:
          0.047486246 = weight(_text_:software in 7244) [ClassicSimilarity], result of:
            0.047486246 = score(doc=7244,freq=2.0), product of:
              0.18056466 = queryWeight, product of:
                3.9671519 = idf(docFreq=2274, maxDocs=44218)
                0.045514934 = queryNorm
              0.2629875 = fieldWeight in 7244, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.9671519 = idf(docFreq=2274, maxDocs=44218)
                0.046875 = fieldNorm(doc=7244)
          0.03699987 = weight(_text_:22 in 7244) [ClassicSimilarity], result of:
            0.03699987 = score(doc=7244,freq=2.0), product of:
              0.15938555 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045514934 = queryNorm
              0.23214069 = fieldWeight in 7244, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=7244)
      0.25 = coord(1/4)
    
    Abstract
    Considers the principles of indexing and the intellectual skills involved in order to determine what automatic indexing systems would be required in order to supplant or complement the human indexer. Good indexing requires: considerable prior knowledge of the literature; judgement as to what to index and what depth to index; reading skills; abstracting skills; and classification skills, Illustrates these features with a detailed description of abstracting and indexing processes involved in generating entries for the mechanical engineering database POWERLINK. Briefly assesses the possibility of replacing human indexers with specialist indexing software, with particular reference to the Object Analyzer from the InTEXT automatic indexing system and using the criteria described for human indexers. At present, it is unlikely that the automatic indexer will replace the human indexer, but when more primary texts are available in electronic form, it may be a useful productivity tool for dealing with large quantities of low grade texts (should they be wanted in the database)
    Date
    9. 2.1997 18:44:22
  3. Greiner-Petter, A.; Schubotz, M.; Cohl, H.S.; Gipp, B.: Semantic preserving bijective mappings for expressions involving special functions between computer algebra systems and document preparation systems (2019) 0.01
    0.01408102 = product of:
      0.05632408 = sum of:
        0.05632408 = sum of:
          0.0316575 = weight(_text_:software in 5499) [ClassicSimilarity], result of:
            0.0316575 = score(doc=5499,freq=2.0), product of:
              0.18056466 = queryWeight, product of:
                3.9671519 = idf(docFreq=2274, maxDocs=44218)
                0.045514934 = queryNorm
              0.17532499 = fieldWeight in 5499, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.9671519 = idf(docFreq=2274, maxDocs=44218)
                0.03125 = fieldNorm(doc=5499)
          0.024666581 = weight(_text_:22 in 5499) [ClassicSimilarity], result of:
            0.024666581 = score(doc=5499,freq=2.0), product of:
              0.15938555 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045514934 = queryNorm
              0.15476047 = fieldWeight in 5499, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=5499)
      0.25 = coord(1/4)
    
    Abstract
    Purpose Modern mathematicians and scientists of math-related disciplines often use Document Preparation Systems (DPS) to write and Computer Algebra Systems (CAS) to calculate mathematical expressions. Usually, they translate the expressions manually between DPS and CAS. This process is time-consuming and error-prone. The purpose of this paper is to automate this translation. This paper uses Maple and Mathematica as the CAS, and LaTeX as the DPS. Design/methodology/approach Bruce Miller at the National Institute of Standards and Technology (NIST) developed a collection of special LaTeX macros that create links from mathematical symbols to their definitions in the NIST Digital Library of Mathematical Functions (DLMF). The authors are using these macros to perform rule-based translations between the formulae in the DLMF and CAS. Moreover, the authors develop software to ease the creation of new rules and to discover inconsistencies. Findings The authors created 396 mappings and translated 58.8 percent of DLMF formulae (2,405 expressions) successfully between Maple and DLMF. For a significant percentage, the special function definitions in Maple and the DLMF were different. An atomic symbol in one system maps to a composite expression in the other system. The translator was also successfully used for automatic verification of mathematical online compendia and CAS. The evaluation techniques discovered two errors in the DLMF and one defect in Maple. Originality/value This paper introduces the first translation tool for special functions between LaTeX and CAS. The approach improves error-prone manual translations and can be used to verify mathematical online compendia and CAS.
    Date
    20. 1.2015 18:30:22
  4. Voorhees, E.M.: Implementing agglomerative hierarchic clustering algorithms for use in document retrieval (1986) 0.01
    0.012333291 = product of:
      0.049333163 = sum of:
        0.049333163 = product of:
          0.098666325 = sum of:
            0.098666325 = weight(_text_:22 in 402) [ClassicSimilarity], result of:
              0.098666325 = score(doc=402,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.61904186 = fieldWeight in 402, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=402)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 22(1986) no.6, S.465-476
  5. Hlava, M.M.K.: Machine aided indexing (MAI) in a multilingual environment (1993) 0.01
    0.011994586 = product of:
      0.047978345 = sum of:
        0.047978345 = product of:
          0.09595669 = sum of:
            0.09595669 = weight(_text_:software in 7405) [ClassicSimilarity], result of:
              0.09595669 = score(doc=7405,freq=6.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.53142565 = fieldWeight in 7405, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7405)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The machine aided indexing (MAI) software devloped by Access Innovations, Inc., is a semantic based, Boolean statement, rule interpreting application with 3 modules: the MA engine which accepts input files, matches terms in the knowledge base, interprets rules, and outputs a text file with suggested indexing terms; a rule building application allowing each Boolean style rule in the knowledge base to be created or modifies; and a statistical computation module which analyzes performance of the MA software against text manually indexed by professional human indexers. The MA software can be applied across multiple languages and can be used where the text to be searched is in one language and the indexes to be output are in another
  6. Fuhr, N.; Niewelt, B.: ¬Ein Retrievaltest mit automatisch indexierten Dokumenten (1984) 0.01
    0.01079163 = product of:
      0.04316652 = sum of:
        0.04316652 = product of:
          0.08633304 = sum of:
            0.08633304 = weight(_text_:22 in 262) [ClassicSimilarity], result of:
              0.08633304 = score(doc=262,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.5416616 = fieldWeight in 262, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=262)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    20.10.2000 12:22:23
  7. Hlava, M.M.K.: Automatic indexing : comparing rule-based and statistics-based indexing systems (2005) 0.01
    0.01079163 = product of:
      0.04316652 = sum of:
        0.04316652 = product of:
          0.08633304 = sum of:
            0.08633304 = weight(_text_:22 in 6265) [ClassicSimilarity], result of:
              0.08633304 = score(doc=6265,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.5416616 = fieldWeight in 6265, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6265)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Information outlook. 9(2005) no.8, S.22-23
  8. Pritchard, J.: Information retrieval : smarter indexing (1991) 0.01
    0.0098929675 = product of:
      0.03957187 = sum of:
        0.03957187 = product of:
          0.07914374 = sum of:
            0.07914374 = weight(_text_:software in 4890) [ClassicSimilarity], result of:
              0.07914374 = score(doc=4890,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.43831247 = fieldWeight in 4890, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4890)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Describes full text retrieval (FTR) which indexes every occurrence of every word except defined 'stop' words. This permits much more sophisticated searching than with keyword indexing. Also discusses document imaging processing (DIP). Lists suppliers and users of the software and describes the experiences of ESOO's Planning Division with Computer Intertrade Ltd. (CIL) ImagePro DIP and their operational practices
  9. Fuhr, N.: Ranking-Experimente mit gewichteter Indexierung (1986) 0.01
    0.0092499675 = product of:
      0.03699987 = sum of:
        0.03699987 = product of:
          0.07399974 = sum of:
            0.07399974 = weight(_text_:22 in 58) [ClassicSimilarity], result of:
              0.07399974 = score(doc=58,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.46428138 = fieldWeight in 58, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=58)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    14. 6.2015 22:12:44
  10. Hauer, M.: Automatische Indexierung (2000) 0.01
    0.0092499675 = product of:
      0.03699987 = sum of:
        0.03699987 = product of:
          0.07399974 = sum of:
            0.07399974 = weight(_text_:22 in 5887) [ClassicSimilarity], result of:
              0.07399974 = score(doc=5887,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.46428138 = fieldWeight in 5887, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=5887)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Wissen in Aktion: Wege des Knowledge Managements. 22. Online-Tagung der DGI, Frankfurt am Main, 2.-4.5.2000. Proceedings. Hrsg.: R. Schmidt
  11. Fuhr, N.: Rankingexperimente mit gewichteter Indexierung (1986) 0.01
    0.0092499675 = product of:
      0.03699987 = sum of:
        0.03699987 = product of:
          0.07399974 = sum of:
            0.07399974 = weight(_text_:22 in 2051) [ClassicSimilarity], result of:
              0.07399974 = score(doc=2051,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.46428138 = fieldWeight in 2051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2051)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    14. 6.2015 22:12:56
  12. Hauer, M.: Tiefenindexierung im Bibliothekskatalog : 17 Jahre intelligentCAPTURE (2019) 0.01
    0.0092499675 = product of:
      0.03699987 = sum of:
        0.03699987 = product of:
          0.07399974 = sum of:
            0.07399974 = weight(_text_:22 in 5629) [ClassicSimilarity], result of:
              0.07399974 = score(doc=5629,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.46428138 = fieldWeight in 5629, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=5629)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    B.I.T.online. 22(2019) H.2, S.163-166
  13. Mongin, L.; Fu, Y.Y.; Mostafa, J.: Open Archives data Service prototype and automated subject indexing using D-Lib archive content as a testbed (2003) 0.01
    0.008394462 = product of:
      0.03357785 = sum of:
        0.03357785 = product of:
          0.0671557 = sum of:
            0.0671557 = weight(_text_:software in 1167) [ClassicSimilarity], result of:
              0.0671557 = score(doc=1167,freq=4.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.3719205 = fieldWeight in 1167, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1167)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The Indiana University School of Library and Information Science opened a new research laboratory in January 2003; The Indiana University School of Library and Information Science Information Processing Laboratory [IU IP Lab]. The purpose of the new laboratory is to facilitate collaboration between scientists in the department in the areas of information retrieval (IR) and information visualization (IV) research. The lab has several areas of focus. These include grid and cluster computing, and a standard Java-based software platform to support plug and play research datasets, a selection of standard IR modules and standard IV algorithms. Future development includes software to enable researchers to contribute datasets, IR algorithms, and visualization algorithms into the standard environment. We decided early on to use OAI-PMH as a resource discovery tool because it is consistent with our mission.
  14. Faraj, N.: Analyse d'une methode d'indexation automatique basée sur une analyse syntaxique de texte (1996) 0.01
    0.007914375 = product of:
      0.0316575 = sum of:
        0.0316575 = product of:
          0.063315 = sum of:
            0.063315 = weight(_text_:software in 685) [ClassicSimilarity], result of:
              0.063315 = score(doc=685,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.35064998 = fieldWeight in 685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0625 = fieldNorm(doc=685)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Evaluates an automatic indexing method based on syntactical text analysis combined with statistical analysis. Tests many combinations for the choice of term categories and weighting methods. The experiment, conducted on a software engineering corpus, shows systematic improvement in the use of syntactic term phrases compared to using only individual words as index terms
  15. Smart, G.: Using language analysis to manage information (1993) 0.01
    0.007914375 = product of:
      0.0316575 = sum of:
        0.0316575 = product of:
          0.063315 = sum of:
            0.063315 = weight(_text_:software in 4423) [ClassicSimilarity], result of:
              0.063315 = score(doc=4423,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.35064998 = fieldWeight in 4423, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4423)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The ESPRIT project SIMPR developed software to analyse documents and generate indexes for them. Of immediate application as a document indexing and classification system, this also offers a technology for information modelling that has broader implications, supporting many new uses for information management softeware. The project was based on the assumption that information can only be managed successfully by computer systems that can view the information contained in a document through the language in which the document is written, and that systems need to be sufficiently flexible to respond to the changing requirements of document use
  16. Samstag-Schnock, U.; Meadow, C.T.: PBS: an ecomical natural language query interpreter (1993) 0.01
    0.007914375 = product of:
      0.0316575 = sum of:
        0.0316575 = product of:
          0.063315 = sum of:
            0.063315 = weight(_text_:software in 5091) [ClassicSimilarity], result of:
              0.063315 = score(doc=5091,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.35064998 = fieldWeight in 5091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5091)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Reports on the design and implementation of the information searching and retrieval software, PBS (Parsing, Boolean recognition, Stemming) for the front end OAK 2, a new version of OAK developed at Toronto Univ. OAK 2 is a research tool for user behaviour studies. PBS receives natural language search statements from an end user and identifies search facets and implied Boolean logic operators
  17. Alexander, M.: Automatic indexing of document images using Excalibur EFS (1995) 0.01
    0.007914375 = product of:
      0.0316575 = sum of:
        0.0316575 = product of:
          0.063315 = sum of:
            0.063315 = weight(_text_:software in 1911) [ClassicSimilarity], result of:
              0.063315 = score(doc=1911,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.35064998 = fieldWeight in 1911, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1911)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Discusses research into the application of adaptive pattern recognition technology to enable effective retrieval from scanned document images. Describes application at the British Library of Excalibur EFS software which uses adaptive pattern recognition technology to provide access to digital information in its native forms, fuzzy searching retrieval and automatic indexing capabilities. It was used to make specialist printed catalogues and indexes accessible on computer via content based indexes
  18. Hlava, M.M.K.; Hainebach, R.: Machine aided indexing : European Parliament study and results (1996) 0.01
    0.007914375 = product of:
      0.0316575 = sum of:
        0.0316575 = product of:
          0.063315 = sum of:
            0.063315 = weight(_text_:software in 5563) [ClassicSimilarity], result of:
              0.063315 = score(doc=5563,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.35064998 = fieldWeight in 5563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5563)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Reports on a pilot study of the application of Access Innovations' machine aided indexing (MAI) system on the European Parliament's full text materials. Describes how the knowledge base used by the MAI software is created, and gives an evaluation of the system
  19. Pritchard-Schoch, T.: Natural language comes of age (1993) 0.01
    0.007914375 = product of:
      0.0316575 = sum of:
        0.0316575 = product of:
          0.063315 = sum of:
            0.063315 = weight(_text_:software in 2570) [ClassicSimilarity], result of:
              0.063315 = score(doc=2570,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.35064998 = fieldWeight in 2570, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2570)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Discusses natural languages and the natural language implementations of Westlaw's full-text legal documents, Westlaw Is Natural. Natural language is not aritificial intelligence but a hybrid of linguistics, mathematics and statistics. Provides 3 classes of retrieval models. Explains how Westlaw processes an English query. Assesses WIN. Covers WIN enhancements; the natural language features of Congressional Quarterly's Washington Alert using a document for a query; the personal librarian front end search software and Dowquest from Dow Jones news/retrieval. Conmsiders whether natural language encourages fuzzy thinking and whether Boolean logic will still be needed
  20. Grummann, M.: Sind Verfahren zur maschinellen Indexierung für Literaturbestände Öffentlicher Bibliotheken geeignet? : Retrievaltests von indexierten ekz-Daten mit der Software IDX (2000) 0.01
    0.007914375 = product of:
      0.0316575 = sum of:
        0.0316575 = product of:
          0.063315 = sum of:
            0.063315 = weight(_text_:software in 1879) [ClassicSimilarity], result of:
              0.063315 = score(doc=1879,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.35064998 = fieldWeight in 1879, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1879)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    

Years

Languages

  • e 28
  • d 18
  • f 1
  • ru 1
  • More… Less…