Search (2 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × author_ss:"Zhang, Y."
  1. Zhang, X.; Fang, Y.; He, W.; Zhang, Y.; Liu, X.: Epistemic motivation, task reflexivity, and knowledge contribution behavior on team wikis : a cross-level moderation model (2019) 0.01
    0.0059357807 = product of:
      0.023743123 = sum of:
        0.023743123 = product of:
          0.047486246 = sum of:
            0.047486246 = weight(_text_:software in 5245) [ClassicSimilarity], result of:
              0.047486246 = score(doc=5245,freq=2.0), product of:
                0.18056466 = queryWeight, product of:
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.045514934 = queryNorm
                0.2629875 = fieldWeight in 5245, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9671519 = idf(docFreq=2274, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5245)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    A cross-level model based on the information processing perspective and trait activation theory was developed and tested in order to investigate the effects of individual-level epistemic motivation and team-level task reflexivity on three different individual contribution behaviors (i.e., adding, deleting, and revising) in the process of knowledge creation on team wikis. Using the Hierarchical Linear Modeling software package and the 2-wave data from 166 individuals in 51 wiki-based teams, we found cross-level interaction effects between individual epistemic motivation and team task reflexivity on different knowledge contribution behaviors on wikis. Epistemic motivation exerted a positive effect on adding, which was strengthened by team task reflexivity. The effect of epistemic motivation on deleting was positive only when task reflexivity was high. In addition, epistemic motivation was strongly positively related to revising, regardless of the level of task reflexivity involved.
  2. Zhang, Y.: Developing a holistic model for digital library evaluation (2010) 0.00
    0.0046249838 = product of:
      0.018499935 = sum of:
        0.018499935 = product of:
          0.03699987 = sum of:
            0.03699987 = weight(_text_:22 in 2360) [ClassicSimilarity], result of:
              0.03699987 = score(doc=2360,freq=2.0), product of:
                0.15938555 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045514934 = queryNorm
                0.23214069 = fieldWeight in 2360, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2360)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    This article reports the author's recent research in developing a holistic model for various levels of digital library (DL) evaluation in which perceived important criteria from heterogeneous stakeholder groups are organized and presented. To develop such a model, the author applied a three-stage research approach: exploration, confirmation, and verification. During the exploration stage, a literature review was conducted followed by an interview, along with a card sorting technique, to collect important criteria perceived by DL experts. Then the criteria identified were used for developing an online survey during the confirmation stage. Survey respondents (431 in total) from 22 countries rated the importance of the criteria. A holistic DL evaluation model was constructed using statistical techniques. Eventually, the verification stage was devised to test the reliability of the model in the context of searching and evaluating an operational DL. The proposed model fills two lacunae in the DL domain: (a) the lack of a comprehensive and flexible framework to guide and benchmark evaluations, and (b) the uncertainty about what divergence exists among heterogeneous DL stakeholders, including general users.

Authors