Search (10 results, page 1 of 1)

  • × author_ss:"Gonçalves, M.A."
  1. Dalip, D.H.; Gonçalves, M.A.; Cristo, M.; Calado, P.: ¬A general multiview framework for assessing the quality of collaboratively created content on web 2.0 (2017) 0.01
    0.010491143 = product of:
      0.041964572 = sum of:
        0.028839052 = weight(_text_:work in 3343) [ClassicSimilarity], result of:
          0.028839052 = score(doc=3343,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.20276234 = fieldWeight in 3343, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3343)
        0.01312552 = product of:
          0.02625104 = sum of:
            0.02625104 = weight(_text_:22 in 3343) [ClassicSimilarity], result of:
              0.02625104 = score(doc=3343,freq=2.0), product of:
                0.13569894 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03875087 = queryNorm
                0.19345059 = fieldWeight in 3343, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3343)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    User-generated content is one of the most interesting phenomena of current published media, as users are now able not only to consume, but also to produce content in a much faster and easier manner. However, such freedom also carries concerns about content quality. In this work, we propose an automatic framework to assess the quality of collaboratively generated content. Quality is addressed as a multidimensional concept, modeled as a combination of independent assessments, each regarding different quality dimensions. Accordingly, we adopt a machine-learning (ML)-based multiview approach to assess content quality. We perform a thorough analysis of our framework on two different domains: Questions and Answer Forums and Collaborative Encyclopedias. This allowed us to better understand when and how the proposed multiview approach is able to provide accurate quality assessments. Our main contributions are: (a) a general ML multiview framework that takes advantage of different views of quality indicators; (b) the improvement (up to 30%) in quality assessment over the best state-of-the-art baseline methods; (c) a thorough feature and view analysis regarding impact, informativeness, and correlation, based on two distinct domains.
    Date
    16.11.2017 13:04:22
  2. Belém, F.M.; Almeida, J.M.; Gonçalves, M.A.: ¬A survey on tag recommendation methods : a review (2017) 0.01
    0.010491143 = product of:
      0.041964572 = sum of:
        0.028839052 = weight(_text_:work in 3524) [ClassicSimilarity], result of:
          0.028839052 = score(doc=3524,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.20276234 = fieldWeight in 3524, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3524)
        0.01312552 = product of:
          0.02625104 = sum of:
            0.02625104 = weight(_text_:22 in 3524) [ClassicSimilarity], result of:
              0.02625104 = score(doc=3524,freq=2.0), product of:
                0.13569894 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03875087 = queryNorm
                0.19345059 = fieldWeight in 3524, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3524)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    Tags (keywords freely assigned by users to describe web content) have become highly popular on Web 2.0 applications, because of the strong stimuli and easiness for users to create and describe their own content. This increase in tag popularity has led to a vast literature on tag recommendation methods. These methods aim at assisting users in the tagging process, possibly increasing the quality of the generated tags and, consequently, improving the quality of the information retrieval (IR) services that rely on tags as data sources. Regardless of the numerous and diversified previous studies on tag recommendation, to our knowledge, no previous work has summarized and organized them into a single survey article. In this article, we propose a taxonomy for tag recommendation methods, classifying them according to the target of the recommendations, their objectives, exploited data sources, and underlying techniques. Moreover, we provide a critical overview of these methods, pointing out their advantages and disadvantages. Finally, we describe the main open challenges related to the field, such as tag ambiguity, cold start, and evaluation issues.
    Date
    16.11.2017 13:30:22
  3. Cota, R.G.; Ferreira, A.A.; Nascimento, C.; Gonçalves, M.A.; Laender, A.H.F.: ¬An unsupervised heuristic-based hierarchical method for name disambiguation in bibliographic citations (2010) 0.01
    0.005098072 = product of:
      0.040784575 = sum of:
        0.040784575 = weight(_text_:work in 3986) [ClassicSimilarity], result of:
          0.040784575 = score(doc=3986,freq=4.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.28674924 = fieldWeight in 3986, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3986)
      0.125 = coord(1/8)
    
    Abstract
    Name ambiguity in the context of bibliographic citations is a difficult problem which, despite the many efforts from the research community, still has a lot of room for improvement. In this article, we present a heuristic-based hierarchical clustering method to deal with this problem. The method successively fuses clusters of citations of similar author names based on several heuristics and similarity measures on the components of the citations (e.g., coauthor names, work title, and publication venue title). During the disambiguation task, the information about fused clusters is aggregated providing more information for the next round of fusion. In order to demonstrate the effectiveness of our method, we ran a series of experiments in two different collections extracted from real-world digital libraries and compared it, under two metrics, with four representative methods described in the literature. We present comparisons of results using each considered attribute separately (i.e., coauthor names, work title, and publication venue title) with the author name attribute and using all attributes together. These results show that our unsupervised method, when using all attributes, performs competitively against all other methods, under both metrics, loosing only in one case against a supervised method, whose result was very close to ours. Moreover, such results are achieved without the burden of any training and without using any privileged information such as knowing a priori the correct number of clusters.
  4. Moura, E.S. de; Fernandes, D.; Ribeiro-Neto, B.; Silva, A.S. da; Gonçalves, M.A.: Using structural information to improve search in Web collections (2010) 0.00
    0.004325858 = product of:
      0.034606863 = sum of:
        0.034606863 = weight(_text_:work in 4119) [ClassicSimilarity], result of:
          0.034606863 = score(doc=4119,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.2433148 = fieldWeight in 4119, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.046875 = fieldNorm(doc=4119)
      0.125 = coord(1/8)
    
    Abstract
    In this work, we investigate the problem of using the block structure of Web pages to improve ranking results. Starting with basic intuitions provided by the concepts of term frequency (TF) and inverse document frequency (IDF), we propose nine block-weight functions to distinguish the impact of term occurrences inside page blocks, instead of inside whole pages. These are then used to compute a modified BM25 ranking function. Using four distinct Web collections, we ran extensive experiments to compare our block-weight ranking formulas with two other baselines: (a) a BM25 ranking applied to full pages, and (b) a BM25 ranking that takes into account best blocks. Our methods suggest that our block-weighting ranking method is superior to all baselines across all collections we used and that average gain in precision figures from 5 to 20% are generated.
  5. Calado, P.; Cristo, M.; Gonçalves, M.A.; Moura, E.S. de; Ribeiro-Neto, B.; Ziviani, N.: Link-based similarity measures for the classification of Web documents (2006) 0.00
    0.0036048815 = product of:
      0.028839052 = sum of:
        0.028839052 = weight(_text_:work in 4921) [ClassicSimilarity], result of:
          0.028839052 = score(doc=4921,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.20276234 = fieldWeight in 4921, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4921)
      0.125 = coord(1/8)
    
    Abstract
    Traditional text-based document classifiers tend to perform poorly an the Web. Text in Web documents is usually noisy and often does not contain enough information to determine their topic. However, the Web provides a different source that can be useful to document classification: its hyperlink structure. In this work, the authors evaluate how the link structure of the Web can be used to determine a measure of similarity appropriate for document classification. They experiment with five different similarity measures and determine their adequacy for predicting the topic of a Web page. Tests performed an a Web directory Show that link information alone allows classifying documents with an average precision of 86%. Further, when combined with a traditional textbased classifier, precision increases to values of up to 90%, representing gains that range from 63 to 132% over the use of text-based classification alone. Because the measures proposed in this article are straightforward to compute, they provide a practical and effective solution for Web classification and related information retrieval tasks. Further, the authors provide an important set of guidelines an how link structure can be used effectively to classify Web documents.
  6. Couto, T.; Cristo, M.; Gonçalves, M.A.; Calado, P.; Ziviani, N.; Moura, E.; Ribeiro-Neto, B.: ¬A comparative study of citations and links in document classification (2006) 0.00
    0.0036048815 = product of:
      0.028839052 = sum of:
        0.028839052 = weight(_text_:work in 2531) [ClassicSimilarity], result of:
          0.028839052 = score(doc=2531,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.20276234 = fieldWeight in 2531, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2531)
      0.125 = coord(1/8)
    
    Abstract
    It is well known that links are an important source of information when dealing with Web collections. However, the question remains on whether the same techniques that are used on the Web can be applied to collections of documents containing citations between scientific papers. In this work we present a comparative study of digital library citations and Web links, in the context of automatic text classification. We show that there are in fact differences between citations and links in this context. For the comparison, we run a series of experiments using a digital library of computer science papers and a Web directory. In our reference collections, measures based on co-citation tend to perform better for pages in the Web directory, with gains up to 37% over text based classifiers, while measures based on bibliographic coupling perform better in a digital library. We also propose a simple and effective way of combining a traditional text based classifier with a citation-link based classifier. This combination is based on the notion of classifier reliability and presented gains of up to 14% in micro-averaged F1 in the Web collection. However, no significant gain was obtained in the digital library. Finally, a user study was performed to further investigate the causes for these results. We discovered that misclassifications by the citation-link based classifiers are in fact difficult cases, hard to classify even for humans.
  7. Pereira, D.A.; Ribeiro-Neto, B.; Ziviani, N.; Laender, A.H.F.; Gonçalves, M.A.: ¬A generic Web-based entity resolution framework (2011) 0.00
    0.0036048815 = product of:
      0.028839052 = sum of:
        0.028839052 = weight(_text_:work in 4450) [ClassicSimilarity], result of:
          0.028839052 = score(doc=4450,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.20276234 = fieldWeight in 4450, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4450)
      0.125 = coord(1/8)
    
    Abstract
    Web data repositories usually contain references to thousands of real-world entities from multiple sources. It is not uncommon that multiple entities share the same label (polysemes) and that distinct label variations are associated with the same entity (synonyms), which frequently leads to ambiguous interpretations. Further, spelling variants, acronyms, abbreviated forms, and misspellings compound to worsen the problem. Solving this problem requires identifying which labels correspond to the same real-world entity, a process known as entity resolution. One approach to solve the entity resolution problem is to associate an authority identifier and a list of variant forms with each entity-a data structure known as an authority file. In this work, we propose a generic framework for implementing a method for generating authority files. Our method uses information from the Web to improve the quality of the authority file and, because of that, is referred to as WER-Web-based Entity Resolution. Our contribution here is threefold: (a) we discuss how to implement the WER framework, which is flexible and easy to adapt to new domains; (b) we run extended experimentation with our WER framework to show that it outperforms selected baselines; and (c) we compare the results of a specialized solution for author name resolution with those produced by the generic WER framework, and show that the WER results remain competitive.
  8. Ferreira, A.A.; Veloso, A.; Gonçalves, M.A.; Laender, A.H.F.: Self-training author name disambiguation for information scarce scenarios (2014) 0.00
    0.0036048815 = product of:
      0.028839052 = sum of:
        0.028839052 = weight(_text_:work in 1292) [ClassicSimilarity], result of:
          0.028839052 = score(doc=1292,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.20276234 = fieldWeight in 1292, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1292)
      0.125 = coord(1/8)
    
    Abstract
    We present a novel 3-step self-training method for author name disambiguation-SAND (self-training associative name disambiguator)-which requires no manual labeling, no parameterization (in real-world scenarios) and is particularly suitable for the common situation in which only the most basic information about a citation record is available (i.e., author names, and work and venue titles). During the first step, real-world heuristics on coauthors are able to produce highly pure (although fragmented) clusters. The most representative of these clusters are then selected to serve as training data for the third supervised author assignment step. The third step exploits a state-of-the-art transductive disambiguation method capable of detecting unseen authors not included in any training example and incorporating reliable predictions to the training data. Experiments conducted with standard public collections, using the minimum set of attributes present in a citation, demonstrate that our proposed method outperforms all representative unsupervised author grouping disambiguation methods and is very competitive with fully supervised author assignment methods. Thus, different from other bootstrapping methods that explore privileged, hard to obtain information such as self-citations and personal information, our proposed method produces topnotch performance with no (manual) training data or parameterization and in the presence of scarce information.
  9. Martins, E.F.; Belém, F.M.; Almeida, J.M.; Gonçalves, M.A.: On cold start for associative tag recommendation (2016) 0.00
    0.0036048815 = product of:
      0.028839052 = sum of:
        0.028839052 = weight(_text_:work in 2494) [ClassicSimilarity], result of:
          0.028839052 = score(doc=2494,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.20276234 = fieldWeight in 2494, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2494)
      0.125 = coord(1/8)
    
    Abstract
    Tag recommendation strategies that exploit term co-occurrence patterns with tags previously assigned to the target object have consistently produced state-of-the-art results. However, such techniques work only for objects with previously assigned tags. Here we focus on tag recommendation for objects with no tags, a variation of the well-known \textit{cold start} problem. We start by evaluating state-of-the-art co-occurrence based methods in cold start. Our results show that the effectiveness of these methods suffers in this situation. Moreover, we show that employing various automatic filtering strategies to generate an initial tag set that enables the use of co-occurrence patterns produces only marginal improvements. We then propose a new approach that exploits both positive and negative user feedback to iteratively select input tags along with a genetic programming strategy to learn the recommendation function. Our experimental results indicate that extending the methods to include user relevance feedback leads to gains in precision of up to 58% over the best baseline in cold start scenarios and gains of up to 43% over the best baseline in objects that contain some initial tags (i.e., no cold start). We also show that our best relevance-feedback-driven strategy performs well even in scenarios that lack user cooperation (i.e., users may refuse to provide feedback) and user reliability (i.e., users may provide the wrong feedback).
  10. Salles, T.; Rocha, L.; Gonçalves, M.A.; Almeida, J.M.; Mourão, F.; Meira Jr., W.; Viegas, F.: ¬A quantitative analysis of the temporal effects on automatic text classification (2016) 0.00
    0.0036048815 = product of:
      0.028839052 = sum of:
        0.028839052 = weight(_text_:work in 3014) [ClassicSimilarity], result of:
          0.028839052 = score(doc=3014,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.20276234 = fieldWeight in 3014, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3014)
      0.125 = coord(1/8)
    
    Abstract
    Automatic text classification (TC) continues to be a relevant research topic and several TC algorithms have been proposed. However, the majority of TC algorithms assume that the underlying data distribution does not change over time. In this work, we are concerned with the challenges imposed by the temporal dynamics observed in textual data sets. We provide evidence of the existence of temporal effects in three textual data sets, reflected by variations observed over time in the class distribution, in the pairwise class similarities, and in the relationships between terms and classes. We then quantify, using a series of full factorial design experiments, the impact of these effects on four well-known TC algorithms. We show that these temporal effects affect each analyzed data set differently and that they restrict the performance of each considered TC algorithm to different extents. The reported quantitative analyses, which are the original contributions of this article, provide valuable new insights to better understand the behavior of TC algorithms when faced with nonstatic (temporal) data distributions and highlight important requirements for the proposal of more accurate classification models.