Search (9 results, page 1 of 1)

  • × author_ss:"Rousseau, R."
  1. Liu, Y.; Rousseau, R.: Citation analysis and the development of science : a case study using articles by some Nobel prize winners (2014) 0.01
    0.00576781 = product of:
      0.04614248 = sum of:
        0.04614248 = weight(_text_:work in 1197) [ClassicSimilarity], result of:
          0.04614248 = score(doc=1197,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.32441974 = fieldWeight in 1197, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0625 = fieldNorm(doc=1197)
      0.125 = coord(1/8)
    
    Abstract
    Using citation data of articles written by some Nobel Prize winners in physics, we show that concave, convex, and straight curves represent different types of interactions between old ideas and new insights. These cases illustrate different diffusion characteristics of academic knowledge, depending on the nature of the knowledge in the new publications. This work adds to the study of the development of science and links this development to citation analysis.
  2. Frandsen, T.F.; Rousseau, R.; Rowlands, I.: Diffusion factors (2006) 0.01
    0.005098072 = product of:
      0.040784575 = sum of:
        0.040784575 = weight(_text_:work in 5587) [ClassicSimilarity], result of:
          0.040784575 = score(doc=5587,freq=4.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.28674924 = fieldWeight in 5587, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5587)
      0.125 = coord(1/8)
    
    Abstract
    Purpose - The purpose of this paper is to clarify earlier work on journal diffusion metrics. Classical journal indicators such as the Garfield impact factor do not measure the breadth of influence across the literature of a particular journal title. As a new approach to measuring research influence, the study complements these existing metrics with a series of formally described diffusion factors. Design/methodology/approach - Using a publication-citation matrix as an organising construct, the paper develops formal descriptions of two forms of diffusion metric: "relative diffusion factors" and "journal diffusion factors" in both their synchronous and diachronous forms. It also provides worked examples for selected library and information science and economics journals, plus a sample of health information papers to illustrate their construction and use. Findings - Diffusion factors capture different aspects of the citation reception process than existing bibliometric measures. The paper shows that diffusion factors can be applied at the whole journal level or for sets of articles and that they provide a richer evidence base for citation analyses than traditional measures alone. Research limitations/implications - The focus of this paper is on clarifying the concepts underlying diffusion factors and there is unlimited scope for further work to apply these metrics to much larger and more comprehensive data sets than has been attempted here. Practical implications - These new tools extend the range of tools available for bibliometric, and possibly webometric, analysis. Diffusion factors might find particular application in studies where the research questions focus on the dynamic aspects of innovation and knowledge transfer. Originality/value - This paper will be of interest to those with theoretical interests in informetric distributions as well as those interested in science policy and innovation studies.
  3. Jin, B.; Li, L.; Rousseau, R.: Long-term influences of interventions in the normal development of science : China and the cultural revolution (2004) 0.00
    0.004325858 = product of:
      0.034606863 = sum of:
        0.034606863 = weight(_text_:work in 2232) [ClassicSimilarity], result of:
          0.034606863 = score(doc=2232,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.2433148 = fieldWeight in 2232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.046875 = fieldNorm(doc=2232)
      0.125 = coord(1/8)
    
    Abstract
    Intellectual and technological talents and skills are the driving force for scientific and industrial development, especially in our times characterized by a knowledgebased economy. Major events in society and related political decisions, however, can have a long-term effect an a country's scientific weIl-being. Although the Cultural Revolution took place from 1966 to 1976, its aftermath can still be felt. This is shown by this study of the production and productivity of Chinese scientists as a function of their age. Based an the 1995-2000 data from the Chinese Science Citation database (CSCD), this article investigates the year-by-year age distribution of scientific and technological personnel publishing in China. It is shown that the "Talent Fault" originating during the Cultural Revolution still exists, and that a new gap resulting from recent brain drain might be developing. The purpose of this work is to provide necessary information about the current situation and especially the existing problems of the S&T workforce in China.
  4. Rousseau, R.; Zuccala, A.: ¬A classification of author co-citations : definitions and search strategies (2004) 0.00
    0.0036048815 = product of:
      0.028839052 = sum of:
        0.028839052 = weight(_text_:work in 2266) [ClassicSimilarity], result of:
          0.028839052 = score(doc=2266,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.20276234 = fieldWeight in 2266, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2266)
      0.125 = coord(1/8)
    
    Abstract
    The term author co-citation is defined and classified according to four distinct forms: the pure first-author co-citation, the pure author co-citation, the general author co-citation, and the special co-authorlco-citation. Each form can be used to obtain one count in an author co-citation study, based an a binary counting rule, which either recognizes the co-citedness of two authors in a given reference list (1) or does not (0). Most studies using author co-citations have relied solely an first-author cocitation counts as evidence of an author's oeuvre or body of work contributed to a research field. In this article, we argue that an author's contribution to a selected field of study should not be limited, but should be based an his/her complete list of publications, regardless of author ranking. We discuss the implications associated with using each co-citation form and show where simple first-author co-citations fit within our classification scheme. Examples are given to substantiate each author co-citation form defined in our classification, including a set of sample Dialog(TM) searches using references extracted from the SciSearch database.
  5. Rousseau, R.; Egghe, L.; Guns, R.: Becoming metric-wise : a bibliometric guide for researchers (2018) 0.00
    0.0036048815 = product of:
      0.028839052 = sum of:
        0.028839052 = weight(_text_:work in 5226) [ClassicSimilarity], result of:
          0.028839052 = score(doc=5226,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.20276234 = fieldWeight in 5226, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5226)
      0.125 = coord(1/8)
    
    Abstract
    Aims to inform researchers about metrics so that they become aware of the evaluative techniques being applied to their scientific output. Understanding these concepts will help them during their funding initiatives, and in hiring and tenure. The book not only describes what indicators do (or are designed to do, which is not always the same thing), but also gives precise mathematical formulae so that indicators can be properly understood and evaluated. Metrics have become a critical issue in science, with widespread international discussion taking place on the subject across scientific journals and organizations. As researchers should know the publication-citation context, the mathematical formulae of indicators being used by evaluating committees and their consequences, and how such indicators might be misused, this book provides an ideal tome on the topic. Provides researchers with a detailed understanding of bibliometric indicators and their applications. Empowers researchers looking to understand the indicators relevant to their work and careers. Presents an informed and rounded picture of bibliometrics, including the strengths and shortcomings of particular indicators. Supplies the mathematics behind bibliometric indicators so they can be properly understood. Written by authors with longstanding expertise who are considered global leaders in the field of bibliometrics
  6. Egghe, L.; Guns, R.; Rousseau, R.; Leuven, K.U.: Erratum (2012) 0.00
    0.00328138 = product of:
      0.02625104 = sum of:
        0.02625104 = product of:
          0.05250208 = sum of:
            0.05250208 = weight(_text_:22 in 4992) [ClassicSimilarity], result of:
              0.05250208 = score(doc=4992,freq=2.0), product of:
                0.13569894 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03875087 = queryNorm
                0.38690117 = fieldWeight in 4992, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4992)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Date
    14. 2.2012 12:53:22
  7. Egghe, L.; Rousseau, R.: Averaging and globalising quotients of informetric and scientometric data (1996) 0.00
    0.0019688278 = product of:
      0.015750622 = sum of:
        0.015750622 = product of:
          0.031501245 = sum of:
            0.031501245 = weight(_text_:22 in 7659) [ClassicSimilarity], result of:
              0.031501245 = score(doc=7659,freq=2.0), product of:
                0.13569894 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03875087 = queryNorm
                0.23214069 = fieldWeight in 7659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7659)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Source
    Journal of information science. 22(1996) no.3, S.165-170
  8. Asonuma, A.; Fang, Y.; Rousseau, R.: Reflections on the age distribution of Japanese scientists (2006) 0.00
    0.0019688278 = product of:
      0.015750622 = sum of:
        0.015750622 = product of:
          0.031501245 = sum of:
            0.031501245 = weight(_text_:22 in 5270) [ClassicSimilarity], result of:
              0.031501245 = score(doc=5270,freq=2.0), product of:
                0.13569894 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03875087 = queryNorm
                0.23214069 = fieldWeight in 5270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5270)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Date
    22. 7.2006 15:26:24
  9. Ahlgren, P.; Jarneving, B.; Rousseau, R.: Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient (2003) 0.00
    0.001312552 = product of:
      0.010500416 = sum of:
        0.010500416 = product of:
          0.021000832 = sum of:
            0.021000832 = weight(_text_:22 in 5171) [ClassicSimilarity], result of:
              0.021000832 = score(doc=5171,freq=2.0), product of:
                0.13569894 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03875087 = queryNorm
                0.15476047 = fieldWeight in 5171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5171)
          0.5 = coord(1/2)
      0.125 = coord(1/8)
    
    Date
    9. 7.2006 10:22:35