Search (4 results, page 1 of 1)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  • × type_ss:"m"
  1. Shah, C.: Collaborative information seeking : the art and science of making the whole greater than the sum of all (2012) 0.09
    0.08851315 = product of:
      0.23603508 = sum of:
        0.10403827 = weight(_text_:supported in 360) [ClassicSimilarity], result of:
          0.10403827 = score(doc=360,freq=6.0), product of:
            0.22949564 = queryWeight, product of:
              5.9223356 = idf(docFreq=321, maxDocs=44218)
              0.03875087 = queryNorm
            0.4533344 = fieldWeight in 360, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.9223356 = idf(docFreq=321, maxDocs=44218)
              0.03125 = fieldNorm(doc=360)
        0.08585433 = weight(_text_:cooperative in 360) [ClassicSimilarity], result of:
          0.08585433 = score(doc=360,freq=4.0), product of:
            0.23071818 = queryWeight, product of:
              5.953884 = idf(docFreq=311, maxDocs=44218)
              0.03875087 = queryNorm
            0.37211776 = fieldWeight in 360, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.953884 = idf(docFreq=311, maxDocs=44218)
              0.03125 = fieldNorm(doc=360)
        0.04614248 = weight(_text_:work in 360) [ClassicSimilarity], result of:
          0.04614248 = score(doc=360,freq=8.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.32441974 = fieldWeight in 360, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03125 = fieldNorm(doc=360)
      0.375 = coord(3/8)
    
    Abstract
    Today's complex, information-intensive problems often require people to work together. Mostly these tasks go far beyond simply searching together; they include information lookup, sharing, synthesis, and decision-making. In addition, they all have an end-goal that is mutually beneficial to all parties involved. Such "collaborative information seeking" (CIS) projects typically last several sessions and the participants all share an intention to contribute and benefit. Not surprisingly, these processes are highly interactive. Shah focuses on two individually well-understood notions: collaboration and information seeking, with the goal of bringing them together to show how it is a natural tendency for humans to work together on complex tasks. The first part of his book introduces the general notions of collaboration and information seeking, as well as related concepts, terminology, and frameworks; and thus provides the reader with a comprehensive treatment of the concepts underlying CIS. The second part of the book details CIS as a standalone domain. A series of frameworks, theories, and models are introduced to provide a conceptual basis for CIS. The final part describes several systems and applications of CIS, along with their broader implications on other fields such as computer-supported cooperative work (CSCW) and human-computer interaction (HCI). With this first comprehensive overview of an exciting new research field, Shah delivers to graduate students and researchers in academia and industry an encompassing description of the technologies involved, state-of-the-art results, and open challenges as well as research opportunities.
    Content
    Inhalt: Part I Introduction.- Introduction.- Collaboration.- Collaborative Information Seeking (CIS) in Context.- Part II Conceptual Understanding of CIS.- Frameworks for CIS Research and Development.- Toward a Model for CIS.- Part III CIS Systems, Applications, and Implications.- Systems and Tools for CIS.- Evaluation.- Conclusion.- Ten Stories of Five Cs.- Brief Overview of Computer-Supported Cooperative Work (CSCW).- Brief Overview of Computer-Supported Collaborative Learning (CSCL).- Brief Overview of Computer-Mediated Communication (CMC).
  2. Zenz, G.; Zhou, X.; Minack, E.; Siberski, W.; Nejdl, W.: Interactive query construction for keyword search on the Semantic Web (2012) 0.01
    0.009385394 = product of:
      0.07508315 = sum of:
        0.07508315 = weight(_text_:supported in 430) [ClassicSimilarity], result of:
          0.07508315 = score(doc=430,freq=2.0), product of:
            0.22949564 = queryWeight, product of:
              5.9223356 = idf(docFreq=321, maxDocs=44218)
              0.03875087 = queryNorm
            0.3271659 = fieldWeight in 430, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.9223356 = idf(docFreq=321, maxDocs=44218)
              0.0390625 = fieldNorm(doc=430)
      0.125 = coord(1/8)
    
    Abstract
    With the advance of the semantic Web, increasing amounts of data are available in a structured and machine-understandable form. This opens opportunities for users to employ semantic queries instead of simple keyword-based ones to accurately express the information need. However, constructing semantic queries is a demanding task for human users [11]. To compose a valid semantic query, a user has to (1) master a query language (e.g., SPARQL) and (2) acquire sufficient knowledge about the ontology or the schema of the data source. While there are systems which support this task with visual tools [21, 26] or natural language interfaces [3, 13, 14, 18], the process of query construction can still be complex and time consuming. According to [24], users prefer keyword search, and struggle with the construction of semantic queries although being supported with a natural language interface. Several keyword search approaches have already been proposed to ease information seeking on semantic data [16, 32, 35] or databases [1, 31]. However, keyword queries lack the expressivity to precisely describe the user's intent. As a result, ranking can at best put query intentions of the majority on top, making it impossible to take the intentions of all users into consideration.
  3. Semantic search over the Web (2012) 0.00
    0.002883905 = product of:
      0.02307124 = sum of:
        0.02307124 = weight(_text_:work in 411) [ClassicSimilarity], result of:
          0.02307124 = score(doc=411,freq=2.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.16220987 = fieldWeight in 411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03125 = fieldNorm(doc=411)
      0.125 = coord(1/8)
    
    Abstract
    The Web has become the world's largest database, with search being the main tool that allows organizations and individuals to exploit its huge amount of information. Search on the Web has been traditionally based on textual and structural similarities, ignoring to a large degree the semantic dimension, i.e., understanding the meaning of the query and of the document content. Combining search and semantics gives birth to the idea of semantic search. Traditional search engines have already advertised some semantic dimensions. Some of them, for instance, can enhance their generated result sets with documents that are semantically related to the query terms even though they may not include these terms. Nevertheless, the exploitation of the semantic search has not yet reached its full potential. In this book, Roberto De Virgilio, Francesco Guerra and Yannis Velegrakis present an extensive overview of the work done in Semantic Search and other related areas. They explore different technologies and solutions in depth, making their collection a valuable and stimulating reading for both academic and industrial researchers. The book is divided into three parts. The first introduces the readers to the basic notions of the Web of Data. It describes the different kinds of data that exist, their topology, and their storing and indexing techniques. The second part is dedicated to Web Search. It presents different types of search, like the exploratory or the path-oriented, alongside methods for their efficient and effective implementation. Other related topics included in this part are the use of uncertainty in query answering, the exploitation of ontologies, and the use of semantics in mashup design and operation. The focus of the third part is on linked data, and more specifically, on applying ideas originating in recommender systems on linked data management, and on techniques for the efficiently querying answering on linked data.
  4. Ingwersen, P.; Järvelin, K.: ¬The turn : integration of information seeking and retrieval in context (2005) 0.00
    0.002549036 = product of:
      0.020392288 = sum of:
        0.020392288 = weight(_text_:work in 1323) [ClassicSimilarity], result of:
          0.020392288 = score(doc=1323,freq=4.0), product of:
            0.14223081 = queryWeight, product of:
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.03875087 = queryNorm
            0.14337462 = fieldWeight in 1323, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6703904 = idf(docFreq=3060, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1323)
      0.125 = coord(1/8)
    
    Abstract
    The Turn analyzes the research of information seeking and retrieval (IS&R) and proposes a new direction of integrating research in these two areas: the fields should turn off their separate and narrow paths and construct a new avenue of research. An essential direction for this avenue is context as given in the subtitle Integration of Information Seeking and Retrieval in Context. Other essential themes in the book include: IS&R research models, frameworks and theories; search and works tasks and situations in context; interaction between humans and machines; information acquisition, relevance and information use; research design and methodology based on a structured set of explicit variables - all set into the holistic cognitive approach. The present monograph invites the reader into a construction project - there is much research to do for a contextual understanding of IS&R. The Turn represents a wide-ranging perspective of IS&R by providing a novel unique research framework, covering both individual and social aspects of information behavior, including the generation, searching, retrieval and use of information. Regarding traditional laboratory information retrieval research, the monograph proposes the extension of research toward actors, search and work tasks, IR interaction and utility of information. Regarding traditional information seeking research, it proposes the extension toward information access technology and work task contexts. The Turn is the first synthesis of research in the broad area of IS&R ranging from systems oriented laboratory IR research to social science oriented information seeking studies. TOC:Introduction.- The Cognitive Framework for Information.- The Development of Information Seeking Research.- Systems-Oriented Information Retrieval.- Cognitive and User-Oriented Information Retrieval.- The Integrated IS&R Research Framework.- Implications of the Cognitive Framework for IS&R.- Towards a Research Program.- Conclusion.- Definitions.- References.- Index.