Search (5 results, page 1 of 1)

  • × author_ss:"Large, A."
  1. Large, A.: Hypertext instructional programs and learner control : a research review (1996) 0.01
    0.0056888866 = product of:
      0.039822206 = sum of:
        0.039822206 = weight(_text_:computer in 5425) [ClassicSimilarity], result of:
          0.039822206 = score(doc=5425,freq=2.0), product of:
            0.14089422 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.038553525 = queryNorm
            0.28263903 = fieldWeight in 5425, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5425)
      0.14285715 = coord(1/7)
    
    Theme
    Computer Based Training
  2. Large, A.; Beheshti, J.; Moukdad, H.: Information seeking on the Web : navigational skills of grade-six primary school students (1999) 0.00
    0.004063491 = product of:
      0.028444434 = sum of:
        0.028444434 = weight(_text_:computer in 6545) [ClassicSimilarity], result of:
          0.028444434 = score(doc=6545,freq=2.0), product of:
            0.14089422 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.038553525 = queryNorm
            0.20188503 = fieldWeight in 6545, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6545)
      0.14285715 = coord(1/7)
    
    Abstract
    Reports on research into the information-seeking habits of primary schoolchildren conducted under operational conditions. Three workstations with Internet access were installed in a grade-six classroom in suburban Montreal. After a short introductory training session for the entire group followed by short individual sessions for each student, 53 students, working in small groups, used these workstations over a six-week period to seek information on the Web of relevance to a class project assigned by their teacher. The project dealt with the Winter Olympic Games (recently completed at that time). The student objective was to locate relevant information for a poster and an oral presentation on one of the sports represented at the Games. All screen activity was directly captured on videotape and group conversations at the workstation were audiotaped. Demographic and computer literacy information was gathered in a questionnaire. This paper presents a map of the information-seeking landscape based upon an analysis of the descriptive statistics gathered from the Web searches. It reveals that the novice users favored browsing over analytic search strategies, although they did show some sophistication in the construction of the latter. Online help was ignored. The children demonstrated a very high level of interactivity with the interface at the expense of thinking, planning and evaluating. This is a preliminary analysis of data which will subsequently be expanded by the inclusion of qualitative data
  3. Cole, C.; Beheshti, J.; Leide, J. E.; Large, A.: Interactive information retrieval : bringing the user to a selection state (2005) 0.00
    0.0032507924 = product of:
      0.022755546 = sum of:
        0.022755546 = weight(_text_:computer in 36) [ClassicSimilarity], result of:
          0.022755546 = score(doc=36,freq=2.0), product of:
            0.14089422 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.038553525 = queryNorm
            0.16150802 = fieldWeight in 36, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.03125 = fieldNorm(doc=36)
      0.14285715 = coord(1/7)
    
    Abstract
    There have been various approaches to conceptualizing interactive information retrieval (IR), which can be generally divided into system and user approaches (Hearst, 1999; cf. also Spink, 1997). Both system and user approaches define user-system interaction in terms of the system and the user reacting to the actions or behaviors of the other: the system reacts to the user's input; the user to the output of the system (Spink, 1997). In system approach models of the interaction, e.g., Moran (1981), "[T]he user initiates an action or operation and the system responds in some way which in turn leads the user to initiate another action and so on" (Beaulieu, 2000, p. 433). In its purest form, the system approach models the user as a reactive part of the interaction, with the system taking the lead (Bates, 1990). User approaches, on the other hand, in their purest form wish to insert a model of the user in all its socio-cognitive dimensions, to the extent that system designers consider such approaches impractical (Vakkari and Jarvelin, 2005, Chap. 7, this volume). The cognitive approach to IR interaction attempts to overcome this divide (Ruthven, 2005, Chap. 4, this volume; Vakkari and Jarvelin, 2005 Chap. 7, this volume) by representing the cognitive elements of both system designers and the user in the interaction model (Larsen and Ingwersen, 2005 Chap. 3, this volume). There are cognitive approach researchers meeting in a central ground from both the system and user side. On the system side, are computer scientists employing cognitive research to design more effective IR systems from the point of view of the user's task (Nathan, 1990; Fischer, Henninger, and Redmiles, 1991; O'Day and Jeffries, 1993; Russell et al., 1993; Kitajima and Polson, 1996; Terwilliger and Polson, 1997). On the user side are cognitive approach researchers applying methods, concepts and models from psychology to design systems that are more in tune with how users acquire information (e.g., Belkin, 1980; Ford (2005, Chap. 5, this volume); Ingwersen (Larsen and Ingwersen, 2005, Chap. 3, this volume); Saracevic, 1996; Vakkari (Vakkari and Jarvelin, 2005, Chap. 7, this volume)).
  4. Large, A.; Beheshti, J.; Rahman, T.: Design criteria for children's Web portals : the users speak out (2002) 0.00
    0.0022386303 = product of:
      0.015670411 = sum of:
        0.015670411 = product of:
          0.031340823 = sum of:
            0.031340823 = weight(_text_:22 in 197) [ClassicSimilarity], result of:
              0.031340823 = score(doc=197,freq=2.0), product of:
                0.13500787 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038553525 = queryNorm
                0.23214069 = fieldWeight in 197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=197)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    2. 6.2005 10:34:22
  5. Cole, C.; Behesthi, J.; Large, A.; Lamoureux, I.; Abuhimed, D.; AlGhamdi, M.: Seeking information for a middle school history project : the concept of implicit knowledge in the students' transition from Kuhlthau's Stage 3 to Stage 4 (2013) 0.00
    0.0018655253 = product of:
      0.013058676 = sum of:
        0.013058676 = product of:
          0.026117353 = sum of:
            0.026117353 = weight(_text_:22 in 667) [ClassicSimilarity], result of:
              0.026117353 = score(doc=667,freq=2.0), product of:
                0.13500787 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038553525 = queryNorm
                0.19345059 = fieldWeight in 667, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=667)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    22. 3.2013 19:41:17