Search (9 results, page 1 of 1)

  • × author_ss:"Gonçalves, M.A."
  1. Pereira, D.A.; Ribeiro-Neto, B.; Ziviani, N.; Laender, A.H.F.; Gonçalves, M.A.: ¬A generic Web-based entity resolution framework (2011) 0.00
    0.0022137975 = product of:
      0.01771038 = sum of:
        0.01771038 = product of:
          0.05313114 = sum of:
            0.05313114 = weight(_text_:problem in 4450) [ClassicSimilarity], result of:
              0.05313114 = score(doc=4450,freq=6.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.4061259 = fieldWeight in 4450, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4450)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    Web data repositories usually contain references to thousands of real-world entities from multiple sources. It is not uncommon that multiple entities share the same label (polysemes) and that distinct label variations are associated with the same entity (synonyms), which frequently leads to ambiguous interpretations. Further, spelling variants, acronyms, abbreviated forms, and misspellings compound to worsen the problem. Solving this problem requires identifying which labels correspond to the same real-world entity, a process known as entity resolution. One approach to solve the entity resolution problem is to associate an authority identifier and a list of variant forms with each entity-a data structure known as an authority file. In this work, we propose a generic framework for implementing a method for generating authority files. Our method uses information from the Web to improve the quality of the authority file and, because of that, is referred to as WER-Web-based Entity Resolution. Our contribution here is threefold: (a) we discuss how to implement the WER framework, which is flexible and easy to adapt to new domains; (b) we run extended experimentation with our WER framework to show that it outperforms selected baselines; and (c) we compare the results of a specialized solution for author name resolution with those produced by the generic WER framework, and show that the WER results remain competitive.
  2. Cota, R.G.; Ferreira, A.A.; Nascimento, C.; Gonçalves, M.A.; Laender, A.H.F.: ¬An unsupervised heuristic-based hierarchical method for name disambiguation in bibliographic citations (2010) 0.00
    0.0018075579 = product of:
      0.014460463 = sum of:
        0.014460463 = product of:
          0.04338139 = sum of:
            0.04338139 = weight(_text_:problem in 3986) [ClassicSimilarity], result of:
              0.04338139 = score(doc=3986,freq=4.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.33160037 = fieldWeight in 3986, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3986)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    Name ambiguity in the context of bibliographic citations is a difficult problem which, despite the many efforts from the research community, still has a lot of room for improvement. In this article, we present a heuristic-based hierarchical clustering method to deal with this problem. The method successively fuses clusters of citations of similar author names based on several heuristics and similarity measures on the components of the citations (e.g., coauthor names, work title, and publication venue title). During the disambiguation task, the information about fused clusters is aggregated providing more information for the next round of fusion. In order to demonstrate the effectiveness of our method, we ran a series of experiments in two different collections extracted from real-world digital libraries and compared it, under two metrics, with four representative methods described in the literature. We present comparisons of results using each considered attribute separately (i.e., coauthor names, work title, and publication venue title) with the author name attribute and using all attributes together. These results show that our unsupervised method, when using all attributes, performs competitively against all other methods, under both metrics, loosing only in one case against a supervised method, whose result was very close to ours. Moreover, such results are achieved without the burden of any training and without using any privileged information such as knowing a priori the correct number of clusters.
  3. Melo, P.F.; Dalip, D.H.; Junior, M.M.; Gonçalves, M.A.; Benevenuto, F.: 10SENT : a stable sentiment analysis method based on the combination of off-the-shelf approaches (2019) 0.00
    0.0018075579 = product of:
      0.014460463 = sum of:
        0.014460463 = product of:
          0.04338139 = sum of:
            0.04338139 = weight(_text_:problem in 4990) [ClassicSimilarity], result of:
              0.04338139 = score(doc=4990,freq=4.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.33160037 = fieldWeight in 4990, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4990)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    Sentiment analysis has become a very important tool for analysis of social media data. There are several methods developed, covering distinct aspects of the problem and disparate strategies. However, no single technique fits well in all cases or for all data sources. Supervised approaches may be able to adapt to specific situations, but require manually labeled training, which is very cumbersome and expensive to acquire, mainly for a new application. In this context, we propose to combine several popular and effective state-of-the-practice sentiment analysis methods by means of an unsupervised bootstrapped strategy. One of our main goals is to reduce the large variability (low stability) of the unsupervised methods across different domains. The experimental results demonstrate that our combined method (aka, 10SENT) improves the effectiveness of the classification task, considering thirteen different data sets. Also, it tackles the key problem of cross-domain low stability and produces the best (or close to best) results in almost all considered contexts, without any additional costs (e.g., manual labeling). Finally, we also investigate a transfer learning approach for sentiment analysis to gather additional (unsupervised) information for the proposed approach, and we show the potential of this technique to improve our results.
  4. Moura, E.S. de; Fernandes, D.; Ribeiro-Neto, B.; Silva, A.S. da; Gonçalves, M.A.: Using structural information to improve search in Web collections (2010) 0.00
    0.0015337638 = product of:
      0.012270111 = sum of:
        0.012270111 = product of:
          0.03681033 = sum of:
            0.03681033 = weight(_text_:problem in 4119) [ClassicSimilarity], result of:
              0.03681033 = score(doc=4119,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.28137225 = fieldWeight in 4119, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4119)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    In this work, we investigate the problem of using the block structure of Web pages to improve ranking results. Starting with basic intuitions provided by the concepts of term frequency (TF) and inverse document frequency (IDF), we propose nine block-weight functions to distinguish the impact of term occurrences inside page blocks, instead of inside whole pages. These are then used to compute a modified BM25 ranking function. Using four distinct Web collections, we ran extensive experiments to compare our block-weight ranking formulas with two other baselines: (a) a BM25 ranking applied to full pages, and (b) a BM25 ranking that takes into account best blocks. Our methods suggest that our block-weighting ranking method is superior to all baselines across all collections we used and that average gain in precision figures from 5 to 20% are generated.
  5. Santana, A.F.; Gonçalves, M.A.; Laender, A.H.F.; Ferreira, A.A.: Incremental author name disambiguation by exploiting domain-specific heuristics (2017) 0.00
    0.0015337638 = product of:
      0.012270111 = sum of:
        0.012270111 = product of:
          0.03681033 = sum of:
            0.03681033 = weight(_text_:problem in 3587) [ClassicSimilarity], result of:
              0.03681033 = score(doc=3587,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.28137225 = fieldWeight in 3587, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3587)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    The vast majority of the current author name disambiguation solutions are designed to disambiguate a whole digital library (DL) at once considering the entire repository. However, these solutions besides being very expensive and having scalability problems, also may not benefit from eventual manual corrections, as they may be lost whenever the process of disambiguating the entire repository is required. In the real world, in which repositories are updated on a daily basis, incremental solutions that disambiguate only the newly introduced citation records, are likely to produce improved results in the long run. However, the problem of incremental author name disambiguation has been largely neglected in the literature. In this article we present a new author name disambiguation method, specially designed for the incremental scenario. In our experiments, our new method largely outperforms recent incremental proposals reported in the literature as well as the current state-of-the-art non-incremental method.
  6. Martins, E.F.; Belém, F.M.; Almeida, J.M.; Gonçalves, M.A.: On cold start for associative tag recommendation (2016) 0.00
    0.0012781365 = product of:
      0.010225092 = sum of:
        0.010225092 = product of:
          0.030675275 = sum of:
            0.030675275 = weight(_text_:problem in 2494) [ClassicSimilarity], result of:
              0.030675275 = score(doc=2494,freq=2.0), product of:
                0.13082431 = queryWeight, product of:
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.030822188 = queryNorm
                0.23447686 = fieldWeight in 2494, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.244485 = idf(docFreq=1723, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2494)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Abstract
    Tag recommendation strategies that exploit term co-occurrence patterns with tags previously assigned to the target object have consistently produced state-of-the-art results. However, such techniques work only for objects with previously assigned tags. Here we focus on tag recommendation for objects with no tags, a variation of the well-known \textit{cold start} problem. We start by evaluating state-of-the-art co-occurrence based methods in cold start. Our results show that the effectiveness of these methods suffers in this situation. Moreover, we show that employing various automatic filtering strategies to generate an initial tag set that enables the use of co-occurrence patterns produces only marginal improvements. We then propose a new approach that exploits both positive and negative user feedback to iteratively select input tags along with a genetic programming strategy to learn the recommendation function. Our experimental results indicate that extending the methods to include user relevance feedback leads to gains in precision of up to 58% over the best baseline in cold start scenarios and gains of up to 43% over the best baseline in objects that contain some initial tags (i.e., no cold start). We also show that our best relevance-feedback-driven strategy performs well even in scenarios that lack user cooperation (i.e., users may refuse to provide feedback) and user reliability (i.e., users may provide the wrong feedback).
  7. Silva, R.M.; Gonçalves, M.A.; Veloso, A.: ¬A Two-stage active learning method for learning to rank (2014) 0.00
    8.7789324E-4 = product of:
      0.007023146 = sum of:
        0.007023146 = product of:
          0.021069437 = sum of:
            0.021069437 = weight(_text_:29 in 1184) [ClassicSimilarity], result of:
              0.021069437 = score(doc=1184,freq=2.0), product of:
                0.108422816 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.030822188 = queryNorm
                0.19432661 = fieldWeight in 1184, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1184)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    26. 1.2014 20:29:57
  8. Dalip, D.H.; Gonçalves, M.A.; Cristo, M.; Calado, P.: ¬A general multiview framework for assessing the quality of collaboratively created content on web 2.0 (2017) 0.00
    8.699961E-4 = product of:
      0.0069599687 = sum of:
        0.0069599687 = product of:
          0.020879906 = sum of:
            0.020879906 = weight(_text_:22 in 3343) [ClassicSimilarity], result of:
              0.020879906 = score(doc=3343,freq=2.0), product of:
                0.10793405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030822188 = queryNorm
                0.19345059 = fieldWeight in 3343, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3343)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    16.11.2017 13:04:22
  9. Belém, F.M.; Almeida, J.M.; Gonçalves, M.A.: ¬A survey on tag recommendation methods : a review (2017) 0.00
    8.699961E-4 = product of:
      0.0069599687 = sum of:
        0.0069599687 = product of:
          0.020879906 = sum of:
            0.020879906 = weight(_text_:22 in 3524) [ClassicSimilarity], result of:
              0.020879906 = score(doc=3524,freq=2.0), product of:
                0.10793405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.030822188 = queryNorm
                0.19345059 = fieldWeight in 3524, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3524)
          0.33333334 = coord(1/3)
      0.125 = coord(1/8)
    
    Date
    16.11.2017 13:30:22