Search (9 results, page 1 of 1)

  • × theme_ss:"Semantic Web"
  • × theme_ss:"Semantische Interoperabilität"
  1. Mayr, P.; Mutschke, P.; Petras, V.: Reducing semantic complexity in distributed digital libraries : Treatment of term vagueness and document re-ranking (2008) 0.02
    0.024729438 = product of:
      0.14837663 = sum of:
        0.14837663 = weight(_text_:ranking in 1909) [ClassicSimilarity], result of:
          0.14837663 = score(doc=1909,freq=12.0), product of:
            0.20271951 = queryWeight, product of:
              5.4090285 = idf(docFreq=537, maxDocs=44218)
              0.03747799 = queryNorm
            0.7319307 = fieldWeight in 1909, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              5.4090285 = idf(docFreq=537, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1909)
      0.16666667 = coord(1/6)
    
    Abstract
    Purpose - The general science portal "vascoda" merges structured, high-quality information collections from more than 40 providers on the basis of search engine technology (FAST) and a concept which treats semantic heterogeneity between different controlled vocabularies. First experiences with the portal show some weaknesses of this approach which come out in most metadata-driven Digital Libraries (DLs) or subject specific portals. The purpose of the paper is to propose models to reduce the semantic complexity in heterogeneous DLs. The aim is to introduce value-added services (treatment of term vagueness and document re-ranking) that gain a certain quality in DLs if they are combined with heterogeneity components established in the project "Competence Center Modeling and Treatment of Semantic Heterogeneity". Design/methodology/approach - Two methods, which are derived from scientometrics and network analysis, will be implemented with the objective to re-rank result sets by the following structural properties: the ranking of the results by core journals (so-called Bradfordizing) and ranking by centrality of authors in co-authorship networks. Findings - The methods, which will be implemented, focus on the query and on the result side of a search and are designed to positively influence each other. Conceptually, they will improve the search quality and guarantee that the most relevant documents in result sets will be ranked higher. Originality/value - The central impact of the paper focuses on the integration of three structural value-adding methods, which aim at reducing the semantic complexity represented in distributed DLs at several stages in the information retrieval process: query construction, search and ranking and re-ranking.
  2. Krause, J.: Shell Model, Semantic Web and Web Information Retrieval (2006) 0.01
    0.010095751 = product of:
      0.0605745 = sum of:
        0.0605745 = weight(_text_:ranking in 6061) [ClassicSimilarity], result of:
          0.0605745 = score(doc=6061,freq=2.0), product of:
            0.20271951 = queryWeight, product of:
              5.4090285 = idf(docFreq=537, maxDocs=44218)
              0.03747799 = queryNorm
            0.29880944 = fieldWeight in 6061, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.4090285 = idf(docFreq=537, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6061)
      0.16666667 = coord(1/6)
    
    Abstract
    The middle of the 1990s are coined by the increased enthusiasm for the possibilities of the WWW, which has only recently deviated - at least in relation to scientific information - for the differentiated measuring of its advantages and disadvantages. Web Information Retrieval originated as a specialized discipline with great commercial significance (for an overview see Lewandowski 2005). Besides the new technological structure that enables the indexing and searching (in seconds) of unimaginable amounts of data worldwide, new assessment processes for the ranking of search results are being developed, which use the link structures of the Web. They are the main innovation with respect to the traditional "mother discipline" of Information Retrieval. From the beginning, link structures of Web pages are applied to commercial search engines in a wide array of variations. From the perspective of scientific information, link topology based approaches were in essence trying to solve a self-created problem: on the one hand, it quickly became clear that the openness of the Web led to an up-tonow unknown increase in available information, but this also caused the quality of the Web pages searched to become a problem - and with it the relevance of the results. The gatekeeper function of traditional information providers, which narrows down every user query to focus on high-quality sources was lacking. Therefore, the recognition of the "authoritativeness" of the Web pages by general search engines such as Google was one of the most important factors for their success.
  3. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.01
    0.0050478755 = product of:
      0.03028725 = sum of:
        0.03028725 = weight(_text_:ranking in 4232) [ClassicSimilarity], result of:
          0.03028725 = score(doc=4232,freq=2.0), product of:
            0.20271951 = queryWeight, product of:
              5.4090285 = idf(docFreq=537, maxDocs=44218)
              0.03747799 = queryNorm
            0.14940472 = fieldWeight in 4232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.4090285 = idf(docFreq=537, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
      0.16666667 = coord(1/6)
    
    Abstract
    Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data. There is a difference in the way users interact with resources, visually or textually, and how resources are represented for machines to be processed by algorithms. This difference complicates bridging the users' intents and machine executable queries. It is important to implement this 'translation' mechanism to impact the search as favorable as possible in terms of performance, complexity and accuracy. To do this, we explain a second technique, that supports such a bridging component. Our second technique is developed around three features that support the search process: looking up, relating and ranking resources. The main goal is to ensure that resources in the results are as precise and relevant as possible. During the evaluation of this technique, we did not only look at the precision of the search results but also investigated how the effectiveness of the search evolved while the user executed certain actions sequentially.
  4. Stamou, G.; Chortaras, A.: Ontological query answering over semantic data (2017) 0.00
    0.0022772634 = product of:
      0.013663581 = sum of:
        0.013663581 = product of:
          0.04099074 = sum of:
            0.04099074 = weight(_text_:29 in 3926) [ClassicSimilarity], result of:
              0.04099074 = score(doc=3926,freq=2.0), product of:
                0.13183585 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03747799 = queryNorm
                0.31092256 = fieldWeight in 3926, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3926)
          0.33333334 = coord(1/3)
      0.16666667 = coord(1/6)
    
    Pages
    S.29-63
  5. Siwecka, D.: Knowledge organization systems used in European national libraries towards interoperability of the semantic Web (2018) 0.00
    0.0022772634 = product of:
      0.013663581 = sum of:
        0.013663581 = product of:
          0.04099074 = sum of:
            0.04099074 = weight(_text_:29 in 4815) [ClassicSimilarity], result of:
              0.04099074 = score(doc=4815,freq=2.0), product of:
                0.13183585 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03747799 = queryNorm
                0.31092256 = fieldWeight in 4815, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4815)
          0.33333334 = coord(1/3)
      0.16666667 = coord(1/6)
    
    Date
    18. 1.2019 18:46:29
  6. Schneider, R.: Web 3.0 ante portas? : Integration von Social Web und Semantic Web (2008) 0.00
    0.0019746807 = product of:
      0.011848084 = sum of:
        0.011848084 = product of:
          0.03554425 = sum of:
            0.03554425 = weight(_text_:22 in 4184) [ClassicSimilarity], result of:
              0.03554425 = score(doc=4184,freq=2.0), product of:
                0.13124153 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03747799 = queryNorm
                0.2708308 = fieldWeight in 4184, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4184)
          0.33333334 = coord(1/3)
      0.16666667 = coord(1/6)
    
    Date
    22. 1.2011 10:38:28
  7. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.00
    0.0019746807 = product of:
      0.011848084 = sum of:
        0.011848084 = product of:
          0.03554425 = sum of:
            0.03554425 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.03554425 = score(doc=759,freq=2.0), product of:
                0.13124153 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03747799 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.33333334 = coord(1/3)
      0.16666667 = coord(1/6)
    
    Date
    11. 5.2013 19:22:18
  8. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.00
    0.0019746807 = product of:
      0.011848084 = sum of:
        0.011848084 = product of:
          0.03554425 = sum of:
            0.03554425 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.03554425 = score(doc=3283,freq=2.0), product of:
                0.13124153 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03747799 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.33333334 = coord(1/3)
      0.16666667 = coord(1/6)
    
  9. Metadata and semantics research : 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings (2014) 0.00
    0.0014232898 = product of:
      0.008539738 = sum of:
        0.008539738 = product of:
          0.025619213 = sum of:
            0.025619213 = weight(_text_:29 in 2192) [ClassicSimilarity], result of:
              0.025619213 = score(doc=2192,freq=2.0), product of:
                0.13183585 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03747799 = queryNorm
                0.19432661 = fieldWeight in 2192, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2192)
          0.33333334 = coord(1/3)
      0.16666667 = coord(1/6)