Search (428 results, page 1 of 22)

  • × theme_ss:"Informetrie"
  1. Herb, U.; Beucke, D.: ¬Die Zukunft der Impact-Messung : Social Media, Nutzung und Zitate im World Wide Web (2013) 0.23
    0.23094857 = product of:
      0.46189713 = sum of:
        0.22269884 = weight(_text_:2f in 2188) [ClassicSimilarity], result of:
          0.22269884 = score(doc=2188,freq=2.0), product of:
            0.2971864 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03505379 = queryNorm
            0.7493574 = fieldWeight in 2188, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0625 = fieldNorm(doc=2188)
        0.01649947 = product of:
          0.03299894 = sum of:
            0.03299894 = weight(_text_:web in 2188) [ClassicSimilarity], result of:
              0.03299894 = score(doc=2188,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.2884563 = fieldWeight in 2188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2188)
          0.5 = coord(1/2)
        0.22269884 = weight(_text_:2f in 2188) [ClassicSimilarity], result of:
          0.22269884 = score(doc=2188,freq=2.0), product of:
            0.2971864 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03505379 = queryNorm
            0.7493574 = fieldWeight in 2188, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0625 = fieldNorm(doc=2188)
      0.5 = coord(3/6)
    
    Content
    Vgl. unter: https://www.leibniz-science20.de%2Fforschung%2Fprojekte%2Faltmetrics-in-verschiedenen-wissenschaftsdisziplinen%2F&ei=2jTgVaaXGcK4Udj1qdgB&usg=AFQjCNFOPdONj4RKBDf9YDJOLuz3lkGYlg&sig2=5YI3KWIGxBmk5_kv0P_8iQ.
  2. Herb, U.: Überwachungskapitalismus und Wissenschaftssteuerung (2019) 0.02
    0.02357858 = product of:
      0.07073574 = sum of:
        0.048600513 = product of:
          0.09720103 = sum of:
            0.09720103 = weight(_text_:seite in 5624) [ClassicSimilarity], result of:
              0.09720103 = score(doc=5624,freq=2.0), product of:
                0.19633847 = queryWeight, product of:
                  5.601063 = idf(docFreq=443, maxDocs=44218)
                  0.03505379 = queryNorm
                0.49506867 = fieldWeight in 5624, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.601063 = idf(docFreq=443, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5624)
          0.5 = coord(1/2)
        0.02213522 = product of:
          0.06640566 = sum of:
            0.06640566 = weight(_text_:29 in 5624) [ClassicSimilarity], result of:
              0.06640566 = score(doc=5624,freq=6.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.5385337 = fieldWeight in 5624, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5624)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Date
    29. 6.2019 17:46:17
    4. 8.2019 19:52:29
    Issue
    [29. Juli 2019].
    Source
    https://www.heise.de/tp/features/Ueberwachungskapitalismus-und-Wissenschaftssteuerung-4480357.html?seite=all
  3. Neth, M.: Citation analysis and the Web (1998) 0.02
    0.019655023 = product of:
      0.05896507 = sum of:
        0.0144370375 = product of:
          0.028874075 = sum of:
            0.028874075 = weight(_text_:web in 108) [ClassicSimilarity], result of:
              0.028874075 = score(doc=108,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.25239927 = fieldWeight in 108, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=108)
          0.5 = coord(1/2)
        0.04452803 = product of:
          0.06679204 = sum of:
            0.033546906 = weight(_text_:29 in 108) [ClassicSimilarity], result of:
              0.033546906 = score(doc=108,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.27205724 = fieldWeight in 108, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=108)
            0.03324513 = weight(_text_:22 in 108) [ClassicSimilarity], result of:
              0.03324513 = score(doc=108,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.2708308 = fieldWeight in 108, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=108)
          0.6666667 = coord(2/3)
      0.33333334 = coord(2/6)
    
    Date
    10. 1.1999 16:22:37
    Source
    Art documentation. 17(1998) no.1, S.29-33
  4. Bookstein, A.: Informetric distributions : I. Unified overview (1990) 0.01
    0.014842677 = product of:
      0.08905606 = sum of:
        0.08905606 = product of:
          0.13358408 = sum of:
            0.06709381 = weight(_text_:29 in 6902) [ClassicSimilarity], result of:
              0.06709381 = score(doc=6902,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.5441145 = fieldWeight in 6902, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6902)
            0.06649026 = weight(_text_:22 in 6902) [ClassicSimilarity], result of:
              0.06649026 = score(doc=6902,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.5416616 = fieldWeight in 6902, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6902)
          0.6666667 = coord(2/3)
      0.16666667 = coord(1/6)
    
    Date
    22. 7.2006 18:55:29
  5. Menczer, F.: Lexical and semantic clustering by Web links (2004) 0.01
    0.014108318 = product of:
      0.042324953 = sum of:
        0.032740124 = product of:
          0.06548025 = sum of:
            0.06548025 = weight(_text_:web in 3090) [ClassicSimilarity], result of:
              0.06548025 = score(doc=3090,freq=14.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.57238775 = fieldWeight in 3090, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3090)
          0.5 = coord(1/2)
        0.009584831 = product of:
          0.028754493 = sum of:
            0.028754493 = weight(_text_:29 in 3090) [ClassicSimilarity], result of:
              0.028754493 = score(doc=3090,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.23319192 = fieldWeight in 3090, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3090)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Recent Web-searching and -mining tools are combining text and link analysis to improve ranking and crawling algorithms. The central assumption behind such approaches is that there is a correiation between the graph structure of the Web and the text and meaning of pages. Here I formalize and empirically evaluate two general conjectures drawing connections from link information to lexical and semantic Web content. The link-content conjecture states that a page is similar to the pages that link to it, and the link-cluster conjecture that pages about the same topic are clustered together. These conjectures are offen simply assumed to hold, and Web search tools are built an such assumptions. The present quantitative confirmation sheds light an the connection between the success of the latest Web-mining techniques and the small world topology of the Web, with encouraging implications for the design of better crawling algorithms.
    Date
    9. 1.2005 19:20:29
  6. Thelwall, M.; Thelwall, S.: ¬A thematic analysis of highly retweeted early COVID-19 tweets : consensus, information, dissent and lockdown life (2020) 0.01
    0.014039302 = product of:
      0.042117905 = sum of:
        0.01031217 = product of:
          0.02062434 = sum of:
            0.02062434 = weight(_text_:web in 178) [ClassicSimilarity], result of:
              0.02062434 = score(doc=178,freq=2.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.18028519 = fieldWeight in 178, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=178)
          0.5 = coord(1/2)
        0.031805735 = product of:
          0.0477086 = sum of:
            0.023962079 = weight(_text_:29 in 178) [ClassicSimilarity], result of:
              0.023962079 = score(doc=178,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19432661 = fieldWeight in 178, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=178)
            0.023746524 = weight(_text_:22 in 178) [ClassicSimilarity], result of:
              0.023746524 = score(doc=178,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19345059 = fieldWeight in 178, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=178)
          0.6666667 = coord(2/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Purpose Public attitudes towards COVID-19 and social distancing are critical in reducing its spread. It is therefore important to understand public reactions and information dissemination in all major forms, including on social media. This article investigates important issues reflected on Twitter in the early stages of the public reaction to COVID-19. Design/methodology/approach A thematic analysis of the most retweeted English-language tweets mentioning COVID-19 during March 10-29, 2020. Findings The main themes identified for the 87 qualifying tweets accounting for 14 million retweets were: lockdown life; attitude towards social restrictions; politics; safety messages; people with COVID-19; support for key workers; work; and COVID-19 facts/news. Research limitations/implications Twitter played many positive roles, mainly through unofficial tweets. Users shared social distancing information, helped build support for social distancing, criticised government responses, expressed support for key workers and helped each other cope with social isolation. A few popular tweets not supporting social distancing show that government messages sometimes failed. Practical implications Public health campaigns in future may consider encouraging grass roots social web activity to support campaign goals. At a methodological level, analysing retweet counts emphasised politics and ignored practical implementation issues. Originality/value This is the first qualitative analysis of general COVID-19-related retweeting.
    Date
    20. 1.2015 18:30:22
  7. Kousha, K.; Thelwall, M.: How is science cited on the Web? : a classification of google unique Web citations (2007) 0.01
    0.013508484 = product of:
      0.04052545 = sum of:
        0.032609943 = product of:
          0.06521989 = sum of:
            0.06521989 = weight(_text_:web in 586) [ClassicSimilarity], result of:
              0.06521989 = score(doc=586,freq=20.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.5701118 = fieldWeight in 586, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=586)
          0.5 = coord(1/2)
        0.007915508 = product of:
          0.023746524 = sum of:
            0.023746524 = weight(_text_:22 in 586) [ClassicSimilarity], result of:
              0.023746524 = score(doc=586,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19345059 = fieldWeight in 586, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=586)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Although the analysis of citations in the scholarly literature is now an established and relatively well understood part of information science, not enough is known about citations that can be found on the Web. In particular, are there new Web types, and if so, are these trivial or potentially useful for studying or evaluating research communication? We sought evidence based upon a sample of 1,577 Web citations of the URLs or titles of research articles in 64 open-access journals from biology, physics, chemistry, and computing. Only 25% represented intellectual impact, from references of Web documents (23%) and other informal scholarly sources (2%). Many of the Web/URL citations were created for general or subject-specific navigation (45%) or for self-publicity (22%). Additional analyses revealed significant disciplinary differences in the types of Google unique Web/URL citations as well as some characteristics of scientific open-access publishing on the Web. We conclude that the Web provides access to a new and different type of citation information, one that may therefore enable us to measure different aspects of research, and the research process in particular; but to obtain good information, the different types should be separated.
  8. Vaughan, L.; Thelwall, M.: Scholarly use of the Web : what are the key inducers of links to journal Web sites? (2003) 0.01
    0.012974623 = product of:
      0.038923867 = sum of:
        0.030936508 = product of:
          0.061873015 = sum of:
            0.061873015 = weight(_text_:web in 1236) [ClassicSimilarity], result of:
              0.061873015 = score(doc=1236,freq=18.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.5408555 = fieldWeight in 1236, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1236)
          0.5 = coord(1/2)
        0.00798736 = product of:
          0.023962079 = sum of:
            0.023962079 = weight(_text_:29 in 1236) [ClassicSimilarity], result of:
              0.023962079 = score(doc=1236,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19432661 = fieldWeight in 1236, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1236)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Web links have been studied by information scientists for at least six years but it is only in the past two that clear evidence has emerged to show that counts of links to scholarly Web spaces (universities and departments) can correlate significantly with research measures, giving some credence to their use for the investigation of scholarly communication. This paper reports an a study to investigate the factors that influence the creation of links to journal Web sites. An empirical approach is used: collecting data and testing for significant patterns. The specific questions addressed are whether site age and site content are inducers of links to a journal's Web site as measured by the ratio of link counts to Journal Impact Factors, two variables previously discovered to be related. A new methodology for data collection is also introduced that uses the Internet Archive to obtain an earliest known creation date for Web sites. The results show that both site age and site content are significant factors for the disciplines studied: library and information science, and law. Comparisons between the two fields also show disciplinary differences in Web site characteristics. Scholars and publishers should be particularly aware that richer content an a journal's Web site tends to generate links and thus the traffic to the site.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.1, S.29-38
  9. Mayr, P.; Tosques, F.: Webometrische Analysen mit Hilfe der Google Web APIs (2005) 0.01
    0.012062661 = product of:
      0.036187984 = sum of:
        0.025005683 = product of:
          0.050011367 = sum of:
            0.050011367 = weight(_text_:web in 3189) [ClassicSimilarity], result of:
              0.050011367 = score(doc=3189,freq=6.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.43716836 = fieldWeight in 3189, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3189)
          0.5 = coord(1/2)
        0.011182303 = product of:
          0.033546906 = sum of:
            0.033546906 = weight(_text_:29 in 3189) [ClassicSimilarity], result of:
              0.033546906 = score(doc=3189,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.27205724 = fieldWeight in 3189, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3189)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Der Report stellt die Möglichkeiten und Einschränkungen der Google Web APIs (Google API) dar. Die Implementierung der Google API anhand einzelner informationswissenschaftlicher Untersuchungen aus der Webometrie ergibt, dass die Google API mit Einschränkungen für internetbezogene Untersuchungen eingesetzt werden können. Vergleiche der Trefferergebnisse über die beiden Google-Schnittstellen Google API und die Standard Weboberfläche Google.com (Google Web) zeigen Unterschiede bezüglich der Reichweite, der Zusammensetzung und Verfügbarkeit. Die Untersuchung basiert auf einfachen und erweiterten Suchanfragen in den Sprachen Deutsch und Englisch. Die analysierten Treffermengen der Google API bestätigen tendenziell frühere Internet-Studien.
    Date
    12. 2.2005 18:29:36
  10. Pernik, V.; Schlögl, C.: Möglichkeiten und Grenzen von Web Structure Mining am Beispiel von informationswissenschaftlichen Hochschulinstituten im deutschsprachigen Raum (2006) 0.01
    0.012037851 = product of:
      0.036113553 = sum of:
        0.023333777 = product of:
          0.046667553 = sum of:
            0.046667553 = weight(_text_:web in 78) [ClassicSimilarity], result of:
              0.046667553 = score(doc=78,freq=4.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.4079388 = fieldWeight in 78, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0625 = fieldNorm(doc=78)
          0.5 = coord(1/2)
        0.012779775 = product of:
          0.038339324 = sum of:
            0.038339324 = weight(_text_:29 in 78) [ClassicSimilarity], result of:
              0.038339324 = score(doc=78,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.31092256 = fieldWeight in 78, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=78)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    In diesem Beitrag wird eine webometrische Untersuchung vorgestellt, die informationswissenschaftliche Hochschulinstitute in den deutschsprachigen Ländern zum Gegenstand hatte. Ziel dieser Studie war es, einerseits die Linkbeziehungen zwischen den Hochschulinstituten zu analysieren. Andererseits sollten Ähnlichkeiten (zum Beispiel aufgrund von fachlichen, örtlichen oder institutionellen Gegebenheiten) identifiziert werden. Es werden nicht nur die Vorgehensweise bei derartigen Analysen und die daraus resultierenden Ergebnisse dargestellt. Insbesondere sollen Problembereiche und Einschränkungen, die mit der Analyse von Linkstrukturen im Web verbunden sind, thematisiert werden.
    Date
    4.12.2006 12:14:29
  11. Meho, L.I.; Rogers, Y.: Citation counting, citation ranking, and h-index of human-computer interaction researchers : a comparison of Scopus and Web of Science (2008) 0.01
    0.011732981 = product of:
      0.03519894 = sum of:
        0.027283436 = product of:
          0.05456687 = sum of:
            0.05456687 = weight(_text_:web in 2352) [ClassicSimilarity], result of:
              0.05456687 = score(doc=2352,freq=14.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.47698978 = fieldWeight in 2352, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2352)
          0.5 = coord(1/2)
        0.007915508 = product of:
          0.023746524 = sum of:
            0.023746524 = weight(_text_:22 in 2352) [ClassicSimilarity], result of:
              0.023746524 = score(doc=2352,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19345059 = fieldWeight in 2352, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2352)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    This study examines the differences between Scopus and Web of Science in the citation counting, citation ranking, and h-index of 22 top human-computer interaction (HCI) researchers from EQUATOR - a large British Interdisciplinary Research Collaboration project. Results indicate that Scopus provides significantly more coverage of HCI literature than Web of Science, primarily due to coverage of relevant ACM and IEEE peer-reviewed conference proceedings. No significant differences exist between the two databases if citations in journals only are compared. Although broader coverage of the literature does not significantly alter the relative citation ranking of individual researchers, Scopus helps distinguish between the researchers in a more nuanced fashion than Web of Science in both citation counting and h-index. Scopus also generates significantly different maps of citation networks of individual scholars than those generated by Web of Science. The study also presents a comparison of h-index scores based on Google Scholar with those based on the union of Scopus and Web of Science. The study concludes that Scopus can be used as a sole data source for citation-based research and evaluation in HCI, especially when citations in conference proceedings are sought, and that researchers should manually calculate h scores instead of relying on system calculations.
    Object
    Web of Science
  12. Davis, P.M.; Cohen, S.A.: ¬The effect of the Web on undergraduate citation behavior 1996-1999 (2001) 0.01
    0.011444679 = product of:
      0.034334037 = sum of:
        0.024749206 = product of:
          0.049498413 = sum of:
            0.049498413 = weight(_text_:web in 5768) [ClassicSimilarity], result of:
              0.049498413 = score(doc=5768,freq=8.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.43268442 = fieldWeight in 5768, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5768)
          0.5 = coord(1/2)
        0.009584831 = product of:
          0.028754493 = sum of:
            0.028754493 = weight(_text_:29 in 5768) [ClassicSimilarity], result of:
              0.028754493 = score(doc=5768,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.23319192 = fieldWeight in 5768, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5768)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    A citation analysis of undergraduate term papers in microeconomics revealed a significant decrease in the frequency of scholarly resources cited between 1996 and 1999. Book citations decreased from 30% to 19%, newspaper citations increased from 7% to 19%, and Web citations increased from 9% to 21%. Web citations checked in 2000 revealed that only 18% of URLs cited in 1996 led to the correct Internet document. For 1999 bibliographies, only 55% of URLs led to the correct document. The authors recommend (1) setting stricter guidelines for acceptable citations in course assignments; (2) creating and maintaining scholarly portals for authoritative Web sites with a commitment to long-term access; and (3) continuing to instruct students how to critically evaluate resources
    Date
    29. 9.2001 14:01:09
  13. Asubiaro, T.V.; Onaolapo, S.: ¬A comparative study of the coverage of African journals in Web of Science, Scopus, and CrossRef (2023) 0.01
    0.011058353 = product of:
      0.03317506 = sum of:
        0.025259553 = product of:
          0.050519105 = sum of:
            0.050519105 = weight(_text_:web in 992) [ClassicSimilarity], result of:
              0.050519105 = score(doc=992,freq=12.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.4416067 = fieldWeight in 992, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=992)
          0.5 = coord(1/2)
        0.007915508 = product of:
          0.023746524 = sum of:
            0.023746524 = weight(_text_:22 in 992) [ClassicSimilarity], result of:
              0.023746524 = score(doc=992,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.19345059 = fieldWeight in 992, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=992)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    This is the first study that evaluated the coverage of journals from Africa in Web of Science, Scopus, and CrossRef. A list of active journals published in each of the 55 African countries was compiled from Ulrich's periodicals directory and African Journals Online (AJOL) website. Journal master lists for Web of Science, Scopus, and CrossRef were searched for the African journals. A total of 2,229 unique active African journals were identified from Ulrich (N = 2,117, 95.0%) and AJOL (N = 243, 10.9%) after removing duplicates. The volume of African journals in Web of Science and Scopus databases is 7.4% (N = 166) and 7.8% (N = 174), respectively, compared to the 45.6% (N = 1,017) covered in CrossRef. While making up only 17.% of all the African journals, South African journals had the best coverage in the two most authoritative databases, accounting for 73.5% and 62.1% of all the African journals in Web of Science and Scopus, respectively. In contrast, Nigeria published 44.5% of all the African journals. The distribution of the African journals is biased in favor of Medical, Life and Health Sciences and Humanities and the Arts in the three databases. The low representation of African journals in CrossRef, a free indexing infrastructure that could be harnessed for building an African-centric research indexing database, is concerning.
    Date
    22. 6.2023 14:09:06
    Object
    Web of Science
  14. Craven, T.C.: Determining authorship of Web pages (2006) 0.01
    0.01053312 = product of:
      0.031599358 = sum of:
        0.020417055 = product of:
          0.04083411 = sum of:
            0.04083411 = weight(_text_:web in 1498) [ClassicSimilarity], result of:
              0.04083411 = score(doc=1498,freq=4.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.35694647 = fieldWeight in 1498, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1498)
          0.5 = coord(1/2)
        0.011182303 = product of:
          0.033546906 = sum of:
            0.033546906 = weight(_text_:29 in 1498) [ClassicSimilarity], result of:
              0.033546906 = score(doc=1498,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.27205724 = fieldWeight in 1498, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1498)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Assignability of authors to Web pages using either normal browsing procedures or browsing assisted by simple automatic extraction was investigated. Candidate strings for 1000 pages were extracted automatically from title elements, meta-tags, and address-like and copyright-like passages; 539 of the pages produced at least one candidate: 310 candidates from titles, 66 from meta-tags, 91 from address-like passages, and 259 from copyright-like passages. An assistant attempted to identify personal authors for 943 pages by examining the pages themselves and related pages; this added 90 pages with authors to the pages from which no candidate strings were extracted. Specific problems are noted and some refinements to the extraction methods are suggested.
    Date
    29. 2.2008 17:17:33
  15. H-Index auch im Web of Science (2008) 0.01
    0.010310684 = product of:
      0.030932052 = sum of:
        0.021433443 = product of:
          0.042866886 = sum of:
            0.042866886 = weight(_text_:web in 590) [ClassicSimilarity], result of:
              0.042866886 = score(doc=590,freq=6.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.37471575 = fieldWeight in 590, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=590)
          0.5 = coord(1/2)
        0.009498609 = product of:
          0.028495826 = sum of:
            0.028495826 = weight(_text_:22 in 590) [ClassicSimilarity], result of:
              0.028495826 = score(doc=590,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.23214069 = fieldWeight in 590, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=590)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Content
    "Zur Kurzmitteilung "Latest enhancements in Scopus: ... h-Index incorporated in Scopus" in den letzten Online-Mitteilungen (Online-Mitteilungen 92, S.31) ist zu korrigieren, dass der h-Index sehr wohl bereits im Web of Science enthalten ist. Allerdings findet man/frau diese Information nicht in der "cited ref search", sondern neben der Trefferliste einer Quick Search, General Search oder einer Suche über den Author Finder in der rechten Navigationsleiste unter dem Titel "Citation Report". Der "Citation Report" bietet für die in der jeweiligen Trefferliste angezeigten Arbeiten: - Die Gesamtzahl der Zitierungen aller Arbeiten in der Trefferliste - Die mittlere Zitationshäufigkeit dieser Arbeiten - Die Anzahl der Zitierungen der einzelnen Arbeiten, aufgeschlüsselt nach Publikationsjahr der zitierenden Arbeiten - Die mittlere Zitationshäufigkeit dieser Arbeiten pro Jahr - Den h-Index (ein h-Index von x sagt aus, dass x Arbeiten der Trefferliste mehr als x-mal zitiert wurden; er ist gegenüber sehr hohen Zitierungen einzelner Arbeiten unempfindlicher als die mittlere Zitationshäufigkeit)."
    Date
    6. 4.2008 19:04:22
    Object
    Web of Science
  16. Crespo, J.A.; Herranz, N.; Li, Y.; Ruiz-Castillo, J.: ¬The effect on citation inequality of differences in citation practices at the web of science subject category level (2014) 0.01
    0.00968514 = product of:
      0.02905542 = sum of:
        0.017861202 = product of:
          0.035722405 = sum of:
            0.035722405 = weight(_text_:web in 1291) [ClassicSimilarity], result of:
              0.035722405 = score(doc=1291,freq=6.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.3122631 = fieldWeight in 1291, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1291)
          0.5 = coord(1/2)
        0.011194218 = product of:
          0.033582654 = sum of:
            0.033582654 = weight(_text_:22 in 1291) [ClassicSimilarity], result of:
              0.033582654 = score(doc=1291,freq=4.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.27358043 = fieldWeight in 1291, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1291)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    This article studies the impact of differences in citation practices at the subfield, or Web of Science subject category level, using the model introduced in Crespo, Li, and Ruiz-Castillo (2013a), according to which the number of citations received by an article depends on its underlying scientific influence and the field to which it belongs. We use the same Thomson Reuters data set of about 4.4 million articles used in Crespo et al. (2013a) to analyze 22 broad fields. The main results are the following: First, when the classification system goes from 22 fields to 219 subfields the effect on citation inequality of differences in citation practices increases from ?14% at the field level to 18% at the subfield level. Second, we estimate a set of exchange rates (ERs) over a wide [660, 978] citation quantile interval to express the citation counts of articles into the equivalent counts in the all-sciences case. In the fractional case, for example, we find that in 187 of 219 subfields the ERs are reliable in the sense that the coefficient of variation is smaller than or equal to 0.10. Third, in the fractional case the normalization of the raw data using the ERs (or subfield mean citations) as normalization factors reduces the importance of the differences in citation practices from 18% to 3.8% (3.4%) of overall citation inequality. Fourth, the results in the fractional case are essentially replicated when we adopt a multiplicative approach.
    Object
    Web of Science
  17. Zhu, Q.; Kong, X.; Hong, S.; Li, J.; He, Z.: Global ontology research progress : a bibliometric analysis (2015) 0.01
    0.00968514 = product of:
      0.02905542 = sum of:
        0.017861202 = product of:
          0.035722405 = sum of:
            0.035722405 = weight(_text_:web in 2590) [ClassicSimilarity], result of:
              0.035722405 = score(doc=2590,freq=6.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.3122631 = fieldWeight in 2590, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2590)
          0.5 = coord(1/2)
        0.011194218 = product of:
          0.033582654 = sum of:
            0.033582654 = weight(_text_:22 in 2590) [ClassicSimilarity], result of:
              0.033582654 = score(doc=2590,freq=4.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.27358043 = fieldWeight in 2590, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2590)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Purpose - The purpose of this paper is to analyse the global scientific outputs of ontology research, an important emerging discipline that has huge potential to improve information understanding, organization, and management. Design/methodology/approach - This study collected literature published during 1900-2012 from the Web of Science database. The bibliometric analysis was performed from authorial, institutional, national, spatiotemporal, and topical aspects. Basic statistical analysis, visualization of geographic distribution, co-word analysis, and a new index were applied to the selected data. Findings - Characteristics of publication outputs suggested that ontology research has entered into the soaring stage, along with increased participation and collaboration. The authors identified the leading authors, institutions, nations, and articles in ontology research. Authors were more from North America, Europe, and East Asia. The USA took the lead, while China grew fastest. Four major categories of frequently used keywords were identified: applications in Semantic Web, applications in bioinformatics, philosophy theories, and common supporting technology. Semantic Web research played a core role, and gene ontology study was well-developed. The study focus of ontology has shifted from philosophy to information science. Originality/value - This is the first study to quantify global research patterns and trends in ontology, which might provide a potential guide for the future research. The new index provides an alternative way to evaluate the multidisciplinary influence of researchers.
    Date
    20. 1.2015 18:30:22
    17. 9.2018 18:22:23
  18. Sanderson, M.: Revisiting h measured on UK LIS and IR academics (2008) 0.01
    0.009028388 = product of:
      0.027085163 = sum of:
        0.017500332 = product of:
          0.035000663 = sum of:
            0.035000663 = weight(_text_:web in 1867) [ClassicSimilarity], result of:
              0.035000663 = score(doc=1867,freq=4.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.3059541 = fieldWeight in 1867, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1867)
          0.5 = coord(1/2)
        0.009584831 = product of:
          0.028754493 = sum of:
            0.028754493 = weight(_text_:29 in 1867) [ClassicSimilarity], result of:
              0.028754493 = score(doc=1867,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.23319192 = fieldWeight in 1867, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1867)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    A brief communication appearing in this journal ranked UK-based LIS and (some) IR academics by their h-index using data derived from the Thomson ISI Web of Science(TM) (WoS). In this brief communication, the same academics were re-ranked, using other popular citation databases. It was found that for academics who publish more in computer science forums, their h was significantly different due to highly cited papers missed by WoS; consequently, their rank changed substantially. The study was widened to a broader set of UK-based LIS and IR academics in which results showed similar statistically significant differences. A variant of h, hmx, was introduced that allowed a ranking of the academics using all citation databases together.
    Date
    1. 6.2008 12:29:25
    Object
    Web of Science
  19. Mingers, J.; Macri, F.; Petrovici, D.: Using the h-index to measure the quality of journals in the field of business and management (2012) 0.01
    0.009028388 = product of:
      0.027085163 = sum of:
        0.017500332 = product of:
          0.035000663 = sum of:
            0.035000663 = weight(_text_:web in 2741) [ClassicSimilarity], result of:
              0.035000663 = score(doc=2741,freq=4.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.3059541 = fieldWeight in 2741, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2741)
          0.5 = coord(1/2)
        0.009584831 = product of:
          0.028754493 = sum of:
            0.028754493 = weight(_text_:29 in 2741) [ClassicSimilarity], result of:
              0.028754493 = score(doc=2741,freq=2.0), product of:
                0.12330827 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03505379 = queryNorm
                0.23319192 = fieldWeight in 2741, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2741)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    This paper considers the use of the h-index as a measure of a journal's research quality and contribution. We study a sample of 455 journals in business and management all of which are included in the ISI Web of Science (WoS) and the Association of Business School's peer review journal ranking list. The h-index is compared with both the traditional impact factors, and with the peer review judgements. We also consider two sources of citation data - the WoS itself and Google Scholar. The conclusions are that the h-index is preferable to the impact factor for a variety of reasons, especially the selective coverage of the impact factor and the fact that it disadvantages journals that publish many papers. Google Scholar is also preferred to WoS as a data source. However, the paper notes that it is not sufficient to use any single metric to properly evaluate research achievements.
    Date
    29. 1.2016 19:00:16
    Object
    Web of Science
  20. Zhang, Y.; Jansen, B.J.; Spink, A.: Identification of factors predicting clickthrough in Web searching using neural network analysis (2009) 0.01
    0.008999648 = product of:
      0.02699894 = sum of:
        0.017500332 = product of:
          0.035000663 = sum of:
            0.035000663 = weight(_text_:web in 2742) [ClassicSimilarity], result of:
              0.035000663 = score(doc=2742,freq=4.0), product of:
                0.11439841 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03505379 = queryNorm
                0.3059541 = fieldWeight in 2742, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2742)
          0.5 = coord(1/2)
        0.009498609 = product of:
          0.028495826 = sum of:
            0.028495826 = weight(_text_:22 in 2742) [ClassicSimilarity], result of:
              0.028495826 = score(doc=2742,freq=2.0), product of:
                0.1227524 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03505379 = queryNorm
                0.23214069 = fieldWeight in 2742, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2742)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    In this research, we aim to identify factors that significantly affect the clickthrough of Web searchers. Our underlying goal is determine more efficient methods to optimize the clickthrough rate. We devise a clickthrough metric for measuring customer satisfaction of search engine results using the number of links visited, number of queries a user submits, and rank of clicked links. We use a neural network to detect the significant influence of searching characteristics on future user clickthrough. Our results show that high occurrences of query reformulation, lengthy searching duration, longer query length, and the higher ranking of prior clicked links correlate positively with future clickthrough. We provide recommendations for leveraging these findings for improving the performance of search engine retrieval and result ranking, along with implications for search engine marketing.
    Date
    22. 3.2009 17:49:11

Years

Languages

  • e 397
  • d 28
  • ro 1
  • sp 1
  • More… Less…

Types

  • a 415
  • el 9
  • m 8
  • r 2
  • s 2
  • b 1
  • x 1
  • More… Less…