Search (2 results, page 1 of 1)

  • × language_ss:"pt"
  1. Martins, S. de Castro: Modelo conceitual de ecossistema semântico de informações corporativas para aplicação em objetos multimídia (2019) 0.00
    0.0042687347 = product of:
      0.021343673 = sum of:
        0.021343673 = product of:
          0.042687345 = sum of:
            0.042687345 = weight(_text_:management in 117) [ClassicSimilarity], result of:
              0.042687345 = score(doc=117,freq=8.0), product of:
                0.14328322 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.042509552 = queryNorm
                0.29792285 = fieldWeight in 117, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.03125 = fieldNorm(doc=117)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Information management in corporate environments is a growing problem as companies' information assets grow and their need to use them in their operations. Several management models have been practiced with application on the most diverse fronts, practices that integrate the so-called Enterprise Content Management. This study proposes a conceptual model of semantic corporate information ecosystem, based on the Universal Document Model proposed by Dagobert Soergel. It focuses on unstructured information objects, especially multimedia, increasingly used in corporate environments, adding semantics and expanding their recovery potential in the composition and reuse of dynamic documents on demand. The proposed model considers stable elements in the organizational environment, such as actors, processes, business metadata and information objects, as well as some basic infrastructures of the corporate information environment. The main objective is to establish a conceptual model that adds semantic intelligence to information assets, leveraging pre-existing infrastructure in organizations, integrating and relating objects to other objects, actors and business processes. The approach methodology considered the state of the art of Information Organization, Representation and Retrieval, Organizational Content Management and Semantic Web technologies, in the scientific literature, as bases for the establishment of an integrative conceptual model. Therefore, the research will be qualitative and exploratory. The predicted steps of the model are: Environment, Data Type and Source Definition, Data Distillation, Metadata Enrichment, and Storage. As a result, in theoretical terms the extended model allows to process heterogeneous and unstructured data according to the established cut-outs and through the processes listed above, allowing value creation in the composition of dynamic information objects, with semantic aggregations to metadata.
  2. Fagundes, P.B.; Freund, G.P.; Vital, L.P.; Monteiro de Barros, C.; Macedo, D.D.J.de: Taxonomias, ontologias e tesauros : possibilidades de contribuição para o processo de Engenharia de Requisitos (2020) 0.00
    0.002667959 = product of:
      0.013339795 = sum of:
        0.013339795 = product of:
          0.02667959 = sum of:
            0.02667959 = weight(_text_:management in 5828) [ClassicSimilarity], result of:
              0.02667959 = score(doc=5828,freq=2.0), product of:
                0.14328322 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.042509552 = queryNorm
                0.18620178 = fieldWeight in 5828, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5828)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Abstract
    Some of the fundamental activities of the software development process are related to the discipline of Requirements Engineering, whose objective is the discovery, analysis, documentation and verification of the requirements that will be part of the system. Requirements are the conditions or capabilities that software must have or perform to meet the users needs. The present study is being developed to propose a model of cooperation between Information Science and Requirements Engineering. Aims to present the analysis results on the possibilities of using the knowledge organization systems: taxonomies, thesauri and ontologies during the activities of Requirements Engineering: design, survey, elaboration, negotiation, specification, validation and requirements management. From the results obtained it was possible to identify in which stage of the Requirements Engineering process, each type of knowledge organization system could be used. We expect that this study put in evidence the need for new researchs and proposals to strengt the exchange between Information Science, as a science that has information as object of study, and the Requirements Engineering which has in the information the raw material to identify the informational needs of software users.