Search (33 results, page 1 of 2)

  • × theme_ss:"Universale Facettenklassifikationen"
  1. Johnson, E.H.: S R Ranganathan in the Internet age (2019) 0.02
    0.019230207 = product of:
      0.06730572 = sum of:
        0.023168506 = weight(_text_:retrieval in 5406) [ClassicSimilarity], result of:
          0.023168506 = score(doc=5406,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.20052543 = fieldWeight in 5406, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=5406)
        0.044137213 = weight(_text_:internet in 5406) [ClassicSimilarity], result of:
          0.044137213 = score(doc=5406,freq=8.0), product of:
            0.11276311 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.03819578 = queryNorm
            0.3914154 = fieldWeight in 5406, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.046875 = fieldNorm(doc=5406)
      0.2857143 = coord(2/7)
    
    Abstract
    S R Ranganathan's ideas have influenced library classification since the inception of his Colon Classification in 1933. His address at Elsinore, "Library Classification Through a Century", was his grand vision of the century of progress in classification from 1876 to 1975, and looked to the future of faceted classification as the means to provide a cohesive system to organize the world's information. Fifty years later, the internet and its achievements, social ecology, and consequences present a far more complicated picture, with the library as he knew it as a very small part and the problems that he confronted now greatly exacerbated. The systematic nature of Ranganathan's canons, principles, postulates, and devices suggest that modern semantic algorithms could guide automatic subject tagging. The vision presented here is one of internet-wide faceted classification and retrieval, implemented as open, distributed facets providing unified faceted searching across all web sites.
    Theme
    Internet
  2. Dahlberg, I.: Towards a future for knowledge organization (2006) 0.01
    0.012804748 = product of:
      0.044816613 = sum of:
        0.030891342 = weight(_text_:retrieval in 1476) [ClassicSimilarity], result of:
          0.030891342 = score(doc=1476,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.26736724 = fieldWeight in 1476, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=1476)
        0.013925271 = product of:
          0.04177581 = sum of:
            0.04177581 = weight(_text_:29 in 1476) [ClassicSimilarity], result of:
              0.04177581 = score(doc=1476,freq=2.0), product of:
                0.13436082 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03819578 = queryNorm
                0.31092256 = fieldWeight in 1476, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1476)
          0.33333334 = coord(1/3)
      0.2857143 = coord(2/7)
    
    Abstract
    Discusses the origin and evolution of the Information Coding Classification (ICC); its theoretical basis, and structure and advantageous attributes for organizing knowledge. Pleads that the considerable work already done on the system should be taken up and developed by interested research groups through collaborative effort. Concludes with some thoughts on the future of knowledge organization for information retrieval and other applications
    Date
    29. 2.2008 13:41:01
  3. Heuvel, C. van den: Multidimensional classifications : past and future conceptualizations and visualizations (2012) 0.01
    0.011172837 = product of:
      0.039104927 = sum of:
        0.027029924 = weight(_text_:retrieval in 632) [ClassicSimilarity], result of:
          0.027029924 = score(doc=632,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.23394634 = fieldWeight in 632, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=632)
        0.012075002 = product of:
          0.036225006 = sum of:
            0.036225006 = weight(_text_:22 in 632) [ClassicSimilarity], result of:
              0.036225006 = score(doc=632,freq=2.0), product of:
                0.13375512 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03819578 = queryNorm
                0.2708308 = fieldWeight in 632, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=632)
          0.33333334 = coord(1/3)
      0.2857143 = coord(2/7)
    
    Abstract
    This paper maps the concepts "space" and "dimensionality" in classifications, in particular in visualizations hereof, from a historical perspective. After a historical excursion in the domain of classification theory of what in mathematics is known as dimensionality reduction in representations of a single universe of knowledge, its potentiality will be explored for information retrieval and navigation in the multiverse of the World Wide Web.
    Date
    22. 2.2013 11:31:25
  4. Broughton, V.: ¬A faceted classification as the basis of a faceted terminology : conversion of a classified structure to thesaurus format in the Bliss Bibliographic Classification, 2nd Edition (2008) 0.01
    0.00960356 = product of:
      0.03361246 = sum of:
        0.023168506 = weight(_text_:retrieval in 1857) [ClassicSimilarity], result of:
          0.023168506 = score(doc=1857,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.20052543 = fieldWeight in 1857, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1857)
        0.010443954 = product of:
          0.03133186 = sum of:
            0.03133186 = weight(_text_:29 in 1857) [ClassicSimilarity], result of:
              0.03133186 = score(doc=1857,freq=2.0), product of:
                0.13436082 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03819578 = queryNorm
                0.23319192 = fieldWeight in 1857, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1857)
          0.33333334 = coord(1/3)
      0.2857143 = coord(2/7)
    
    Abstract
    Facet analysis is an established methodology for building classifications and subject indexing systems, but has been less rigorously applied to thesauri. The process of creating a compatible thesaurus from the schedules of the Bliss Bibliographic Classification 2nd edition highlights the ways in which the conceptual relationships in a subject field are handled in the two types of retrieval languages. An underlying uniformity of theory is established, and the way in which software can manage the relationships is discussed. The manner of displaying verbal expressions of concepts (vocabulary control) is also considered, but is found to be less well controlled in the classification than in the thesaurus. Nevertheless, there is good reason to think that facet analysis provides a sound basis for structuring a variety of knowledge organization tools.
    Date
    31. 5.2008 19:11:29
  5. Aitchison, J.: ¬The thesaurofacet. A multipurpose retrieval language tool (1970) 0.01
    0.008826098 = product of:
      0.061782684 = sum of:
        0.061782684 = weight(_text_:retrieval in 460) [ClassicSimilarity], result of:
          0.061782684 = score(doc=460,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.5347345 = fieldWeight in 460, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.125 = fieldNorm(doc=460)
      0.14285715 = coord(1/7)
    
  6. Austin, D.: Prospects for a new general classification (1969) 0.01
    0.008002967 = product of:
      0.028010383 = sum of:
        0.019307088 = weight(_text_:retrieval in 1519) [ClassicSimilarity], result of:
          0.019307088 = score(doc=1519,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.16710453 = fieldWeight in 1519, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1519)
        0.008703294 = product of:
          0.026109882 = sum of:
            0.026109882 = weight(_text_:29 in 1519) [ClassicSimilarity], result of:
              0.026109882 = score(doc=1519,freq=2.0), product of:
                0.13436082 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03819578 = queryNorm
                0.19432661 = fieldWeight in 1519, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1519)
          0.33333334 = coord(1/3)
      0.2857143 = coord(2/7)
    
    Abstract
    In traditional classification schemes, the universe of knowledge is brokeii down into self- contained disciplines which are further analysed to the point at which a particular concept is located. This leads to problems of: (a) currency: keeping the scheme in line with new discoveries. (b) hospitality: allowing room for insertion of new subjects (c) cross-classification: a concept may be considered in such a way that it fits as logically into one discipline as another. Machine retrieval is also hampered by the fact that any individual concept is notated differently, depending on where in the scheme it appears. The approach now considered is from an organized universe of concepts, every concept being set down only once in an appropriate vocabulary, where it acquires the notation which identifies it wherever it is used. It has been found that all the concepts present in any compound subject can be handled as though they belong to one of two basic concept types, being either Entities or Attributes. In classing, these concepts are identified, and notation is selected from appropriate schedules. Subjects are then built according to formal rules, the final class number incorporating operators which convey the fundamental relationships between concepts. From this viewpoint, the Rules and Operators of the proposed system can be seen as the grammar of an IR language, and the schedules of Entities and Attributes as its vocabulary.
    Date
    10.10.2014 18:17:29
  7. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.01
    0.007980598 = product of:
      0.02793209 = sum of:
        0.019307088 = weight(_text_:retrieval in 1418) [ClassicSimilarity], result of:
          0.019307088 = score(doc=1418,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.16710453 = fieldWeight in 1418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.008625003 = product of:
          0.025875006 = sum of:
            0.025875006 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.025875006 = score(doc=1418,freq=2.0), product of:
                0.13375512 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03819578 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.33333334 = coord(1/3)
      0.2857143 = coord(2/7)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  8. Wilson, T.D.: ¬The work of the British Classification Research Group (1972) 0.01
    0.0066195736 = product of:
      0.046337012 = sum of:
        0.046337012 = weight(_text_:retrieval in 2766) [ClassicSimilarity], result of:
          0.046337012 = score(doc=2766,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.40105087 = fieldWeight in 2766, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.09375 = fieldNorm(doc=2766)
      0.14285715 = coord(1/7)
    
    Source
    Subject retrieval in the seventies: new directions. Proc. of an int. symp. ... College Park, 14.-15.5.1971. Ed.: H.H. Wellisch u.a
  9. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.01
    0.0061674234 = product of:
      0.04317196 = sum of:
        0.04317196 = weight(_text_:retrieval in 2874) [ClassicSimilarity], result of:
          0.04317196 = score(doc=2874,freq=10.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.37365708 = fieldWeight in 2874, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
      0.14285715 = coord(1/7)
    
    Abstract
    Purpose - The aim of this article is to estimate the impact of faceted classification and the faceted analytical method on the development of various information retrieval tools over the latter part of the twentieth and early twenty-first centuries. Design/methodology/approach - The article presents an examination of various subject access tools intended for retrieval of both print and digital materials to determine whether they exhibit features of faceted systems. Some attention is paid to use of the faceted approach as a means of structuring information on commercial web sites. The secondary and research literature is also surveyed for commentary on and evaluation of facet analysis as a basis for the building of vocabulary and conceptual tools. Findings - The study finds that faceted systems are now very common, with a major increase in their use over the last 15 years. Most LIS subject indexing tools (classifications, subject heading lists and thesauri) now demonstrate features of facet analysis to a greater or lesser degree. A faceted approach is frequently taken to the presentation of product information on commercial web sites, and there is an independent strand of theory and documentation related to this application. There is some significant research on semi-automatic indexing and retrieval (query expansion and query formulation) using facet analytical techniques. Originality/value - This article provides an overview of an important conceptual approach to information retrieval, and compares different understandings and applications of this methodology.
  10. Mills, J.: Faceted classification and logical division in information retrieval (2004) 0.01
    0.0057327193 = product of:
      0.040129032 = sum of:
        0.040129032 = weight(_text_:retrieval in 831) [ClassicSimilarity], result of:
          0.040129032 = score(doc=831,freq=6.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.34732026 = fieldWeight in 831, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=831)
      0.14285715 = coord(1/7)
    
    Abstract
    The main object of the paper is to demonstrate in detail the role of classification in information retrieval (IR) and the design of classificatory structures by the application of logical division to all forms of the content of records, subject and imaginative. The natural product of such division is a faceted classification. The latter is seen not as a particular kind of library classification but the only viable form enabling the locating and relating of information to be optimally predictable. A detailed exposition of the practical steps in facet analysis is given, drawing on the experience of the new Bliss Classification (BC2). The continued existence of the library as a highly organized information store is assumed. But, it is argued, it must acknowledge the relevance of the revolution in library classification that has taken place. It considers also how alphabetically arranged subject indexes may utilize controlled use of categorical (generically inclusive) and syntactic relations to produce similarly predictable locating and relating systems for IR.
    Theme
    Klassifikationssysteme im Online-Retrieval
  11. Austin, D.: Differences between library classifications and machine-based subject retrieval systems : some inferences drawn from research in Britain, 1963-1973 (1979) 0.01
    0.005516311 = product of:
      0.038614176 = sum of:
        0.038614176 = weight(_text_:retrieval in 2564) [ClassicSimilarity], result of:
          0.038614176 = score(doc=2564,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.33420905 = fieldWeight in 2564, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=2564)
      0.14285715 = coord(1/7)
    
  12. Aschero, B.; Negrini, G.; Zanola, R.; Zozi, P.: Systematifier : a guide for the systematization of Italian literature (1995) 0.01
    0.005516311 = product of:
      0.038614176 = sum of:
        0.038614176 = weight(_text_:retrieval in 4128) [ClassicSimilarity], result of:
          0.038614176 = score(doc=4128,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.33420905 = fieldWeight in 4128, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=4128)
      0.14285715 = coord(1/7)
    
    Source
    Konstruktion und Retrieval von Wissen: 3. Tagung der Deutschen ISKO-Sektion einschließlich der Vorträge des Workshops "Thesauri als terminologische Lexika", Weilburg, 27.-29.10.1993. Hrsg.: N. Meder u.a
  13. Faceted classification today : International UDC Seminar 2017, 14.-15. Spetember, London, UK. (2017) 0.00
    0.004413049 = product of:
      0.030891342 = sum of:
        0.030891342 = weight(_text_:retrieval in 3773) [ClassicSimilarity], result of:
          0.030891342 = score(doc=3773,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.26736724 = fieldWeight in 3773, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=3773)
      0.14285715 = coord(1/7)
    
    Abstract
    Faceted analytical theory is a widely accepted approach for constructing modern classification schemes and other controlled vocabularies. While the advantages of faceted approach are broadly accepted and understood the actual implementation is coupled with many challenges when it comes to data modelling, management and retrieval. UDC Seminar 2017 revisits faceted analytical theory as one of the most influential methodologies in the development of knowledge organization systems.
  14. Sharada, B.A.: Ranganathan's Colon Classification : Kannada-English Version 'dwibindu vargiikaraNa' (2012) 0.00
    0.003861418 = product of:
      0.027029924 = sum of:
        0.027029924 = weight(_text_:retrieval in 827) [ClassicSimilarity], result of:
          0.027029924 = score(doc=827,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.23394634 = fieldWeight in 827, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=827)
      0.14285715 = coord(1/7)
    
    Abstract
    "dwibindu vargiikaraNa" is the Kannada rendering of the revised Colon Classification, 7th Edition, intended essentially for the classification of macro documents. This paper discusses the planning, preparation, and features of Colon Classification (CC) in Kannada, one of the major Indian languages as well as the Official Language of Karnataka, and uploading the CC on the web. Linguistic issues related to the Kannada rendering are discussed with possible solutions. It creates facilities in the field of Indexing Language (IL) to prepare products such as, Subject Heading List, Information Retrieval Thesaurus, and creation of subject glossaries or updating the available subject dictionaries in Kannada.
  15. Dahlberg, I.: Why a new universal classification system is needed (2017) 0.00
    0.003861418 = product of:
      0.027029924 = sum of:
        0.027029924 = weight(_text_:retrieval in 3614) [ClassicSimilarity], result of:
          0.027029924 = score(doc=3614,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.23394634 = fieldWeight in 3614, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3614)
      0.14285715 = coord(1/7)
    
    Abstract
    Research history of the last 70 years highlights various systems for contents assessment and retrieval of scientific literature, such as universal classifications, thesauri, ontologies etc., which have followed developments of their own, notwithstanding a general trend towards interoperability, i.e. either to become instruments for cooperation or to widen their scope to encompass neighbouring fields within their framework. In the case of thesauri and ontologies, the endeavour to upgrade them into a universal system was bound to miscarry. This paper purports to indicate ways to gain from past experience and possibly rally material achievements while updating and promoting the ontologically-based faceted Information Coding Classification as a progressive universal system fit for meeting whatever requirements in the fields of information and science at large.
  16. Hudon, M.: Facet (2020) 0.00
    0.003861418 = product of:
      0.027029924 = sum of:
        0.027029924 = weight(_text_:retrieval in 5899) [ClassicSimilarity], result of:
          0.027029924 = score(doc=5899,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.23394634 = fieldWeight in 5899, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5899)
      0.14285715 = coord(1/7)
    
    Abstract
    S.R. Ranganathan is credited with the introduction of the term "facet" in the field of knowledge organization towards the middle of the twentieth century. Facets have traditionally been used to organize document collections and to express complex subjects. In the digital world, they act as filters to facilitate navigation and improve retrieval. But the popularity of the term does not mean that a definitive characterization of the concept has been established. Indeed, several conceptualizations of the facet co-exist. This article provides an overview of formal and informal definitions found in the literature of knowledge organization, followed by a discussion of four common conceptualizations of the facet: process vs product, nature vs function, object vs subject and organization vs navigation.
  17. Broughton, V.: Finding Bliss on the Web : some problems of representing faceted terminologies in digital environments 0.00
    0.0033097868 = product of:
      0.023168506 = sum of:
        0.023168506 = weight(_text_:retrieval in 3532) [ClassicSimilarity], result of:
          0.023168506 = score(doc=3532,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.20052543 = fieldWeight in 3532, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3532)
      0.14285715 = coord(1/7)
    
    Theme
    Klassifikationssysteme im Online-Retrieval
  18. Tomlinson, H.: Report on work for new general classification scheme (1969) 0.00
    0.0029839869 = product of:
      0.020887908 = sum of:
        0.020887908 = product of:
          0.06266372 = sum of:
            0.06266372 = weight(_text_:29 in 1285) [ClassicSimilarity], result of:
              0.06266372 = score(doc=1285,freq=2.0), product of:
                0.13436082 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03819578 = queryNorm
                0.46638384 = fieldWeight in 1285, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1285)
          0.33333334 = coord(1/3)
      0.14285715 = coord(1/7)
    
    Pages
    S.29-41
  19. Dahlberg, I.: Wissensmuster und Musterwissen im Erfassen klassifikatorischer Ganzheiten (1980) 0.00
    0.0027581556 = product of:
      0.019307088 = sum of:
        0.019307088 = weight(_text_:retrieval in 124) [ClassicSimilarity], result of:
          0.019307088 = score(doc=124,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.16710453 = fieldWeight in 124, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=124)
      0.14285715 = coord(1/7)
    
    Abstract
    Als 'klassifikatorische Ganzheiten' gelten hier Wissensgebiete, bzw. ihre Begriffe. Die Muster, die sich aufgrund der Begriffsrelationen von Wissensgebieten gewinnen lassen, werden sowohl durch formkategoriale als auch durch seinskategoriale Bezüge dieser Begriffe geprägt. Logische und linguistische Untersuchungen haben gezeigt, daß sich Wissensbereiche und Wissensgebiete formkategorial jeweils zu Triaden zusammenordnen lassen und als solche entsprechende Wissensmuster bilden. Ein universales System von 3**3 Triaden von Wissensgebieten wird vorgestellt und erläutert. Es wird dabei gezeigt, wie sich auch in der Interaktion von Wissensgebieten miteinander, z.B. in der Verwendung der Methoden und Verfahren eines Gebietes in einem anderen Gebiet oder der Fundierung eines Gebiets durch ein anderes gewisse Muster abzeichnen, die die Systemstellen eines solchen Systems apriori und auch aposteriori "systematisch" besetzen, ohne die innere Ordnung des Systems und seiner Triaden zu beeinträchtigen. Auf diese Weisen wird durch den Aspekt des internalen Bezugs von Wissensmustern (gegenüber dem o.g. elementalen und totalen) ein Musterwissen gewonnen, das insbesondere auch bei der Benutzung eines solchen Systems von großem Nutzen sein kann, da es das Gedächtnis stützt, die Mustererkennung ermöglicht und dementsprechend die Handhabung bei Einspeicherung und Retrieval von zu ordenbarem Wissen erleichtert.
  20. Beghtol, C.: From the universe of knowledge to the universe of concepts : the structural revolution in classification for information retrieval (2008) 0.00
    0.0027581556 = product of:
      0.019307088 = sum of:
        0.019307088 = weight(_text_:retrieval in 1856) [ClassicSimilarity], result of:
          0.019307088 = score(doc=1856,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.16710453 = fieldWeight in 1856, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1856)
      0.14285715 = coord(1/7)