Search (265 results, page 1 of 14)

  • × theme_ss:"Wissensrepräsentation"
  1. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.24
    0.23686166 = product of:
      0.4145079 = sum of:
        0.040443353 = product of:
          0.12133005 = sum of:
            0.12133005 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.12133005 = score(doc=5820,freq=2.0), product of:
                0.32382426 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03819578 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
        0.030891342 = weight(_text_:retrieval in 5820) [ClassicSimilarity], result of:
          0.030891342 = score(doc=5820,freq=8.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.26736724 = fieldWeight in 5820, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.1715866 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.1715866 = score(doc=5820,freq=4.0), product of:
            0.32382426 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03819578 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.1715866 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.1715866 = score(doc=5820,freq=4.0), product of:
            0.32382426 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03819578 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.5714286 = coord(4/7)
    
    Abstract
    The successes of information retrieval (IR) in recent decades were built upon bag-of-words representations. Effective as it is, bag-of-words is only a shallow text understanding; there is a limited amount of information for document ranking in the word space. This dissertation goes beyond words and builds knowledge based text representations, which embed the external and carefully curated information from knowledge bases, and provide richer and structured evidence for more advanced information retrieval systems. This thesis research first builds query representations with entities associated with the query. Entities' descriptions are used by query expansion techniques that enrich the query with explanation terms. Then we present a general framework that represents a query with entities that appear in the query, are retrieved by the query, or frequently show up in the top retrieved documents. A latent space model is developed to jointly learn the connections from query to entities and the ranking of documents, modeling the external evidence from knowledge bases and internal ranking features cooperatively. To further improve the quality of relevant entities, a defining factor of our query representations, we introduce learning to rank to entity search and retrieve better entities from knowledge bases. In the document representation part, this thesis research also moves one step forward with a bag-of-entities model, in which documents are represented by their automatic entity annotations, and the ranking is performed in the entity space.
    This proposal includes plans to improve the quality of relevant entities with a co-learning framework that learns from both entity labels and document labels. We also plan to develop a hybrid ranking system that combines word based and entity based representations together with their uncertainties considered. At last, we plan to enrich the text representations with connections between entities. We propose several ways to infer entity graph representations for texts, and to rank documents using their structure representations. This dissertation overcomes the limitation of word based representations with external and carefully curated information from knowledge bases. We believe this thesis research is a solid start towards the new generation of intelligent, semantic, and structured information retrieval.
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  2. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.19
    0.19479765 = product of:
      0.34089586 = sum of:
        0.040443353 = product of:
          0.12133005 = sum of:
            0.12133005 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.12133005 = score(doc=701,freq=2.0), product of:
                0.32382426 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03819578 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.057792407 = weight(_text_:retrieval in 701) [ClassicSimilarity], result of:
          0.057792407 = score(doc=701,freq=28.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.5001983 = fieldWeight in 701, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.12133005 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.12133005 = score(doc=701,freq=2.0), product of:
            0.32382426 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03819578 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.12133005 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.12133005 = score(doc=701,freq=2.0), product of:
            0.32382426 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03819578 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.5714286 = coord(4/7)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  3. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.18
    0.1819951 = product of:
      0.4246552 = sum of:
        0.060665026 = product of:
          0.18199508 = sum of:
            0.18199508 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.18199508 = score(doc=400,freq=2.0), product of:
                0.32382426 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03819578 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.33333334 = coord(1/3)
        0.18199508 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.18199508 = score(doc=400,freq=2.0), product of:
            0.32382426 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03819578 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
        0.18199508 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.18199508 = score(doc=400,freq=2.0), product of:
            0.32382426 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03819578 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
      0.42857143 = coord(3/7)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  4. Hoppe, T.: Semantische Filterung : ein Werkzeug zur Steigerung der Effizienz im Wissensmanagement (2013) 0.03
    0.031817753 = product of:
      0.07424142 = sum of:
        0.030891342 = weight(_text_:retrieval in 2245) [ClassicSimilarity], result of:
          0.030891342 = score(doc=2245,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.26736724 = fieldWeight in 2245, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=2245)
        0.02942481 = weight(_text_:internet in 2245) [ClassicSimilarity], result of:
          0.02942481 = score(doc=2245,freq=2.0), product of:
            0.11276311 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.03819578 = queryNorm
            0.2609436 = fieldWeight in 2245, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0625 = fieldNorm(doc=2245)
        0.013925271 = product of:
          0.04177581 = sum of:
            0.04177581 = weight(_text_:29 in 2245) [ClassicSimilarity], result of:
              0.04177581 = score(doc=2245,freq=2.0), product of:
                0.13436082 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03819578 = queryNorm
                0.31092256 = fieldWeight in 2245, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2245)
          0.33333334 = coord(1/3)
      0.42857143 = coord(3/7)
    
    Abstract
    Dieser Artikel adressiert einen Randbereich des Wissensmanagements: die Schnittstelle zwischen Unternehmens-externen Informationen im Internet und den Leistungsprozessen eines Unternehmens. Diese Schnittstelle ist besonders für Unternehmen von Interesse, deren Leistungsprozesse von externen Informationen abhängen und die auf diese Prozesse angewiesen sind. Wir zeigen an zwei Fallbeispielen, dass die inhaltliche Filterung von Informationen beim Eintritt ins Unternehmen ein wichtiges Werkzeug darstellt, um daran anschließende Wissens- und Informationsmanagementprozesse effizient zu gestalten.
    Date
    29. 9.2015 18:56:44
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  5. Semantic digital libraries (2009) 0.03
    0.03016965 = product of:
      0.07039585 = sum of:
        0.015445671 = weight(_text_:retrieval in 3371) [ClassicSimilarity], result of:
          0.015445671 = score(doc=3371,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.13368362 = fieldWeight in 3371, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=3371)
        0.040237773 = weight(_text_:bibliothek in 3371) [ClassicSimilarity], result of:
          0.040237773 = score(doc=3371,freq=4.0), product of:
            0.15681393 = queryWeight, product of:
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.03819578 = queryNorm
            0.25659564 = fieldWeight in 3371, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.03125 = fieldNorm(doc=3371)
        0.014712405 = weight(_text_:internet in 3371) [ClassicSimilarity], result of:
          0.014712405 = score(doc=3371,freq=2.0), product of:
            0.11276311 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.03819578 = queryNorm
            0.1304718 = fieldWeight in 3371, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.03125 = fieldNorm(doc=3371)
      0.42857143 = coord(3/7)
    
    Abstract
    Libraries have always been an inspiration for the standards and technologies developed by semantic web activities. However, except for the Dublin Core specification, semantic web and social networking technologies have not been widely adopted and further developed by major digital library initiatives and projects. Yet semantic technologies offer a new level of flexibility, interoperability, and relationships for digital repositories. Kruk and McDaniel present semantic web-related aspects of current digital library activities, and introduce their functionality; they show examples ranging from general architectural descriptions to detailed usages of specific ontologies, and thus stimulate the awareness of researchers, engineers, and potential users of those technologies. Their presentation is completed by chapters on existing prototype systems such as JeromeDL, BRICKS, and Greenstone, as well as a look into the possible future of semantic digital libraries. This book is aimed at researchers and graduate students in areas like digital libraries, the semantic web, social networks, and information retrieval. This audience will benefit from detailed descriptions of both today's possibilities and also the shortcomings of applying semantic web technologies to large digital repositories of often unstructured data.
    RSWK
    Elektronische Bibliothek / Semantic Web / Ontologie <Wissensverarbeitung> / Aufsatzsammlung
    Subject
    Elektronische Bibliothek / Semantic Web / Ontologie <Wissensverarbeitung> / Aufsatzsammlung
    Theme
    Internet
  6. Widhalm, R.; Mück, T.: Topic maps : Semantische Suche im Internet (2002) 0.02
    0.024429383 = product of:
      0.08550283 = sum of:
        0.03453757 = weight(_text_:retrieval in 4731) [ClassicSimilarity], result of:
          0.03453757 = score(doc=4731,freq=10.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.29892567 = fieldWeight in 4731, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=4731)
        0.05096527 = weight(_text_:internet in 4731) [ClassicSimilarity], result of:
          0.05096527 = score(doc=4731,freq=24.0), product of:
            0.11276311 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.03819578 = queryNorm
            0.45196757 = fieldWeight in 4731, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.03125 = fieldNorm(doc=4731)
      0.2857143 = coord(2/7)
    
    Abstract
    Das Werk behandelt die aktuellen Entwicklungen zur inhaltlichen Erschließung von Informationsquellen im Internet. Topic Maps, semantische Modelle vernetzter Informationsressourcen unter Verwendung von XML bzw. HyTime, bieten alle notwendigen Modellierungskonstrukte, um Dokumente im Internet zu klassifizieren und ein assoziatives, semantisches Netzwerk über diese zu legen. Neben Einführungen in XML, XLink, XPointer sowie HyTime wird anhand von Einsatzszenarien gezeigt, wie diese neuartige Technologie für Content Management und Information Retrieval im Internet funktioniert. Der Entwurf einer Abfragesprache wird ebenso skizziert wie der Prototyp einer intelligenten Suchmaschine. Das Buch zeigt, wie Topic Maps den Weg zu semantisch gesteuerten Suchprozessen im Internet weisen.
    RSWK
    Internet / Information Retrieval / Semantisches Netz / HyTime
    Internet / Information Retrieval / Semantisches Netz / XML
    Internet / Navigieren / Suchmaschine / Abfragesprache / Semantisches Netz / ISO-Norm
    Subject
    Internet / Information Retrieval / Semantisches Netz / HyTime
    Internet / Information Retrieval / Semantisches Netz / XML
    Internet / Navigieren / Suchmaschine / Abfragesprache / Semantisches Netz / ISO-Norm
    Theme
    Internet
  7. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2010) 0.02
    0.021585472 = product of:
      0.07554915 = sum of:
        0.027029924 = weight(_text_:retrieval in 4792) [ClassicSimilarity], result of:
          0.027029924 = score(doc=4792,freq=2.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.23394634 = fieldWeight in 4792, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4792)
        0.048519224 = product of:
          0.072778836 = sum of:
            0.036553834 = weight(_text_:29 in 4792) [ClassicSimilarity], result of:
              0.036553834 = score(doc=4792,freq=2.0), product of:
                0.13436082 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03819578 = queryNorm
                0.27205724 = fieldWeight in 4792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4792)
            0.036225006 = weight(_text_:22 in 4792) [ClassicSimilarity], result of:
              0.036225006 = score(doc=4792,freq=2.0), product of:
                0.13375512 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03819578 = queryNorm
                0.2708308 = fieldWeight in 4792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4792)
          0.6666667 = coord(2/3)
      0.2857143 = coord(2/7)
    
    Abstract
    Moderne Verfahren des Information Retrieval verlangen nach aussagekräftigen und detailliert relationierten Dokumentationssprachen. Der selektive Transfer einzelner Modellierungsstrategien aus dem Bereich semantischer Technologien für die Gestaltung und Relationierung bestehender Dokumentationssprachen wird diskutiert. In Form einer Taxonomie wird ein hierarchisch strukturiertes Relationeninventar definiert, welches sowohl hinreichend allgemeine als auch zahlreiche spezifische Relationstypen enthält, die eine detaillierte und damit aussagekräftige Relationierung des Vokabulars ermöglichen. Das bringt einen Zugewinn an Übersichtlichkeit und Funktionalität. Im Gegensatz zu anderen Ansätzen und Überlegungen zur Schaffung von Relationeninventaren entwickelt der vorgestellte Vorschlag das Relationeninventar aus der Begriffsmenge eines bestehenden Gegenstandsbereichs heraus.
    Date
    2. 3.2013 12:29:05
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  8. Semantic applications (2018) 0.02
    0.020943036 = product of:
      0.07330062 = sum of:
        0.047292516 = weight(_text_:retrieval in 5204) [ClassicSimilarity], result of:
          0.047292516 = score(doc=5204,freq=12.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.40932083 = fieldWeight in 5204, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5204)
        0.026008105 = weight(_text_:internet in 5204) [ClassicSimilarity], result of:
          0.026008105 = score(doc=5204,freq=4.0), product of:
            0.11276311 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.03819578 = queryNorm
            0.23064373 = fieldWeight in 5204, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5204)
      0.2857143 = coord(2/7)
    
    LCSH
    Information storage and retrieval
    Information Systems Applications (incl. Internet)
    Information Storage and Retrieval
    RSWK
    Information Retrieval
    Subject
    Information Retrieval
    Information storage and retrieval
    Information Systems Applications (incl. Internet)
    Information Storage and Retrieval
  9. Rindflesch, T.C.; Aronson, A.R.: Semantic processing in information retrieval (1993) 0.02
    0.020750104 = product of:
      0.07262536 = sum of:
        0.06044075 = weight(_text_:retrieval in 4121) [ClassicSimilarity], result of:
          0.06044075 = score(doc=4121,freq=10.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.5231199 = fieldWeight in 4121, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4121)
        0.0121846115 = product of:
          0.036553834 = sum of:
            0.036553834 = weight(_text_:29 in 4121) [ClassicSimilarity], result of:
              0.036553834 = score(doc=4121,freq=2.0), product of:
                0.13436082 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03819578 = queryNorm
                0.27205724 = fieldWeight in 4121, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4121)
          0.33333334 = coord(1/3)
      0.2857143 = coord(2/7)
    
    Abstract
    Intuition suggests that one way to enhance the information retrieval process would be the use of phrases to characterize the contents of text. A number of researchers, however, have noted that phrases alone do not improve retrieval effectiveness. In this paper we briefly review the use of phrases in information retrieval and then suggest extensions to this paradigm using semantic information. We claim that semantic processing, which can be viewed as expressing relations between the concepts represented by phrases, will in fact enhance retrieval effectiveness. The availability of the UMLS® domain model, which we exploit extensively, significantly contributes to the feasibility of this processing.
    Date
    29. 6.2015 14:51:28
  10. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.02
    0.020718787 = product of:
      0.07251575 = sum of:
        0.06044075 = weight(_text_:retrieval in 4330) [ClassicSimilarity], result of:
          0.06044075 = score(doc=4330,freq=10.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.5231199 = fieldWeight in 4330, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4330)
        0.012075002 = product of:
          0.036225006 = sum of:
            0.036225006 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.036225006 = score(doc=4330,freq=2.0), product of:
                0.13375512 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03819578 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.33333334 = coord(1/3)
      0.2857143 = coord(2/7)
    
    Abstract
    One vision of the Semantic Web is that it will be much like the Web we know today, except that documents will be enriched by annotations in machine understandable markup. These annotations will provide metadata about the documents as well as machine interpretable statements capturing some of the meaning of document content. We discuss how the information retrieval paradigm might be recast in such an environment. We suggest that retrieval can be tightly bound to inference. Doing so makes today's Web search engines useful to Semantic Web inference engines, and causes improvements in either retrieval or inference to lead directly to improvements in the other.
    Date
    12. 2.2011 17:35:22
  11. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.02
    0.020470887 = product of:
      0.071648106 = sum of:
        0.061298102 = weight(_text_:retrieval in 987) [ClassicSimilarity], result of:
          0.061298102 = score(doc=987,freq=14.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.5305404 = fieldWeight in 987, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.010350002 = product of:
          0.031050006 = sum of:
            0.031050006 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.031050006 = score(doc=987,freq=2.0), product of:
                0.13375512 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03819578 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.33333334 = coord(1/3)
      0.2857143 = coord(2/7)
    
    Content
    Introduction: envisioning semantic information spacesIndexing and knowledge organization -- Semantic technologies for knowledge representation -- Information retrieval and knowledge exploration -- Approaches to handle heterogeneity -- Problems with establishing semantic interoperability -- Formalization in indexing languages -- Typification of semantic relations -- Inferences in retrieval processes -- Semantic interoperability and inferences -- Remaining research questions.
    Date
    23. 7.2017 13:49:22
    LCSH
    Information retrieval
    RSWK
    Information Retrieval
    Subject
    Information retrieval
    Information Retrieval
  12. Stuckenschmidt, H.; Harmelen, F. van: Information sharing on the semantic web (2005) 0.02
    0.018463511 = product of:
      0.06462228 = sum of:
        0.038614176 = weight(_text_:retrieval in 2789) [ClassicSimilarity], result of:
          0.038614176 = score(doc=2789,freq=8.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.33420905 = fieldWeight in 2789, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2789)
        0.026008105 = weight(_text_:internet in 2789) [ClassicSimilarity], result of:
          0.026008105 = score(doc=2789,freq=4.0), product of:
            0.11276311 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.03819578 = queryNorm
            0.23064373 = fieldWeight in 2789, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2789)
      0.2857143 = coord(2/7)
    
    Classification
    ST 205 Informatik / Monographien / Vernetzung, verteilte Systeme / Internet allgemein
    LCSH
    Ontologies (Information retrieval)
    RSWK
    Semantic Web / Ontologie <Wissensverarbeitung> / Information Retrieval / Verteilung / Metadaten / Datenintegration
    RVK
    ST 205 Informatik / Monographien / Vernetzung, verteilte Systeme / Internet allgemein
    Subject
    Semantic Web / Ontologie <Wissensverarbeitung> / Information Retrieval / Verteilung / Metadaten / Datenintegration
    Ontologies (Information retrieval)
  13. Hüsken, P.: Informationssuche im Semantic Web : Methoden des Information Retrieval für die Wissensrepräsentation (2006) 0.02
    0.017785802 = product of:
      0.06225031 = sum of:
        0.051806357 = weight(_text_:retrieval in 4332) [ClassicSimilarity], result of:
          0.051806357 = score(doc=4332,freq=10.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.44838852 = fieldWeight in 4332, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4332)
        0.010443954 = product of:
          0.03133186 = sum of:
            0.03133186 = weight(_text_:29 in 4332) [ClassicSimilarity], result of:
              0.03133186 = score(doc=4332,freq=2.0), product of:
                0.13436082 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03819578 = queryNorm
                0.23319192 = fieldWeight in 4332, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4332)
          0.33333334 = coord(1/3)
      0.2857143 = coord(2/7)
    
    Abstract
    Das Semantic Web bezeichnet ein erweitertes World Wide Web (WWW), das die Bedeutung von präsentierten Inhalten in neuen standardisierten Sprachen wie RDF Schema und OWL modelliert. Diese Arbeit befasst sich mit dem Aspekt des Information Retrieval, d.h. es wird untersucht, in wie weit Methoden der Informationssuche sich auf modelliertes Wissen übertragen lassen. Die kennzeichnenden Merkmale von IR-Systemen wie vage Anfragen sowie die Unterstützung unsicheren Wissens werden im Kontext des Semantic Web behandelt. Im Fokus steht die Suche nach Fakten innerhalb einer Wissensdomäne, die entweder explizit modelliert sind oder implizit durch die Anwendung von Inferenz abgeleitet werden können. Aufbauend auf der an der Universität Duisburg-Essen entwickelten Retrievalmaschine PIRE wird die Anwendung unsicherer Inferenz mit probabilistischer Prädikatenlogik (pDatalog) implementiert.
    Date
    12. 2.2011 17:29:27
    Footnote
    Zugl.: Dortmund, Univ., Dipl.-Arb., 2006 u.d.T.: Hüsken, Peter: Information-Retrieval im Semantic-Web.
    RSWK
    Information Retrieval / Semantic Web
    Subject
    Information Retrieval / Semantic Web
  14. Drexel, G.: Knowledge engineering for intelligent information retrieval (2001) 0.02
    0.017770756 = product of:
      0.06219764 = sum of:
        0.040129032 = weight(_text_:retrieval in 4043) [ClassicSimilarity], result of:
          0.040129032 = score(doc=4043,freq=6.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.34732026 = fieldWeight in 4043, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4043)
        0.022068607 = weight(_text_:internet in 4043) [ClassicSimilarity], result of:
          0.022068607 = score(doc=4043,freq=2.0), product of:
            0.11276311 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.03819578 = queryNorm
            0.1957077 = fieldWeight in 4043, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.046875 = fieldNorm(doc=4043)
      0.2857143 = coord(2/7)
    
    Abstract
    This paper presents a clustered approach to designing an overall ontological model together with a general rule-based component that serves as a mapping device. By observational criteria, a multi-lingual team of experts excerpts concepts from general communication in the media. The team, then, finds equivalent expressions in English, German, French, and Spanish. On the basis of a set of ontological and lexical relations, a conceptual network is built up. Concepts are thought to be universal. Objects unique in time and space are identified by names and will be explained by the universals as their instances. Our approach relies on multi-relational descriptions of concepts. It provides a powerful tool for documentation and conceptual language learning. First and foremost, our multi-lingual, polyhierarchical ontology fills the gap of semantically-based information retrieval by generating enhanced and improved queries for internet search
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  15. Atanassova, I.; Bertin, M.: Semantic facets for scientific information retrieval (2014) 0.02
    0.016857661 = product of:
      0.059001815 = sum of:
        0.046817202 = weight(_text_:retrieval in 4471) [ClassicSimilarity], result of:
          0.046817202 = score(doc=4471,freq=6.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.40520695 = fieldWeight in 4471, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
        0.0121846115 = product of:
          0.036553834 = sum of:
            0.036553834 = weight(_text_:29 in 4471) [ClassicSimilarity], result of:
              0.036553834 = score(doc=4471,freq=2.0), product of:
                0.13436082 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03819578 = queryNorm
                0.27205724 = fieldWeight in 4471, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4471)
          0.33333334 = coord(1/3)
      0.2857143 = coord(2/7)
    
    Abstract
    We present an Information Retrieval System for scientific publications that provides the possibility to filter results according to semantic facets. We use sentence-level semantic annotations that identify specific semantic relations in texts, such as methods, definitions, hypotheses, that correspond to common information needs related to scientific literature. The semantic annotations are obtained using a rule-based method that identifies linguistic clues organized into a linguistic ontology. The system is implemented using Solr Search Server and offers efficient search and navigation in scientific papers.
    Source
    Semantic Web Evaluation Challenge. SemWebEval 2014 at ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected Papers. Eds.: V. Presutti et al
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  16. Vallet, D.; Fernández, M.; Castells, P.: ¬An ontology-based information retrieval model (2005) 0.02
    0.016223133 = product of:
      0.056780964 = sum of:
        0.046337012 = weight(_text_:retrieval in 4708) [ClassicSimilarity], result of:
          0.046337012 = score(doc=4708,freq=8.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.40105087 = fieldWeight in 4708, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4708)
        0.010443954 = product of:
          0.03133186 = sum of:
            0.03133186 = weight(_text_:29 in 4708) [ClassicSimilarity], result of:
              0.03133186 = score(doc=4708,freq=2.0), product of:
                0.13436082 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03819578 = queryNorm
                0.23319192 = fieldWeight in 4708, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4708)
          0.33333334 = coord(1/3)
      0.2857143 = coord(2/7)
    
    Abstract
    Semantic search has been one of the motivations of the Semantic Web since it was envisioned. We propose a model for the exploitation of ontologybased KBs to improve search over large document repositories. Our approach includes an ontology-based scheme for the semi-automatic annotation of documents, and a retrieval system. The retrieval model is based on an adaptation of the classic vector-space model, including an annotation weighting algorithm, and a ranking algorithm. Semantic search is combined with keyword-based search to achieve tolerance to KB incompleteness. Our proposal is illustrated with sample experiments showing improvements with respect to keyword-based search, and providing ground for further research and discussion.
    Source
    The Semantic Web: research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings. Eds.: A. Gómez-Pérez u. J. Euzenat
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  17. Mestrovic, A.; Cali, A.: ¬An ontology-based approach to information retrieval (2017) 0.01
    0.014808962 = product of:
      0.051831365 = sum of:
        0.033440858 = weight(_text_:retrieval in 3489) [ClassicSimilarity], result of:
          0.033440858 = score(doc=3489,freq=6.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.28943354 = fieldWeight in 3489, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3489)
        0.018390507 = weight(_text_:internet in 3489) [ClassicSimilarity], result of:
          0.018390507 = score(doc=3489,freq=2.0), product of:
            0.11276311 = queryWeight, product of:
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.03819578 = queryNorm
            0.16308975 = fieldWeight in 3489, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.9522398 = idf(docFreq=6276, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3489)
      0.2857143 = coord(2/7)
    
    Abstract
    We define a general framework for ontology-based information retrieval (IR). In our approach, document and query expansion rely on a base taxonomy that is extracted from a lexical database or a Linked Data set (e.g. WordNet, Wiktionary etc.). Each term from a document or query is modelled as a vector of base concepts from the base taxonomy. We define a set of mapping functions which map multiple ontological layers (dimensions) onto the base taxonomy. This way, each concept from the included ontologies can also be represented as a vector of base concepts from the base taxonomy. We propose a general weighting schema which is used for the vector space model. Our framework can therefore take into account various lexical and semantic relations between terms and concepts (e.g. synonymy, hierarchy, meronymy, antonymy, geo-proximity, etc.). This allows us to avoid certain vocabulary problems (e.g. synonymy, polysemy) as well as to reduce the vector size in the IR tasks.
    Content
    Vgl.: https://www.springerprofessional.de/an-ontology-based-approach-to-information-retrieval/12066802. Vgl. auch: http://www.keystone-cost.eu/ikc2016/program.php.
    Series
    Information Systems and Applications, incl. Internet/Web, and HCI; 10151
  18. ¬The Semantic Web : research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings (2005) 0.01
    0.014449425 = product of:
      0.050572984 = sum of:
        0.040129032 = weight(_text_:retrieval in 439) [ClassicSimilarity], result of:
          0.040129032 = score(doc=439,freq=6.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.34732026 = fieldWeight in 439, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=439)
        0.010443954 = product of:
          0.03133186 = sum of:
            0.03133186 = weight(_text_:29 in 439) [ClassicSimilarity], result of:
              0.03133186 = score(doc=439,freq=2.0), product of:
                0.13436082 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03819578 = queryNorm
                0.23319192 = fieldWeight in 439, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=439)
          0.33333334 = coord(1/3)
      0.2857143 = coord(2/7)
    
    Abstract
    This book constitutes the refereed proceedings of the Second European Semantic Web Conference, ESWC 2005, heldin Heraklion, Crete, Greece in May/June 2005. The 48 revised full papers presented were carefully reviewed and selected from 148 submissions. The papers are organized in topical sections on semantic Web services, languages, ontologies, reasoning and querying, search and information retrieval, user and communities, natural language for the semantic Web, annotation tools, and semantic Web applications.
    LCSH
    Information storage and retrieval systems
    Subject
    Information storage and retrieval systems
  19. Beppler, F.D.; Fonseca, F.T.; Pacheco, R.C.S.: Hermeneus: an architecture for an ontology-enabled information retrieval (2008) 0.01
    0.0144225815 = product of:
      0.050479032 = sum of:
        0.040129032 = weight(_text_:retrieval in 3261) [ClassicSimilarity], result of:
          0.040129032 = score(doc=3261,freq=6.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.34732026 = fieldWeight in 3261, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3261)
        0.010350002 = product of:
          0.031050006 = sum of:
            0.031050006 = weight(_text_:22 in 3261) [ClassicSimilarity], result of:
              0.031050006 = score(doc=3261,freq=2.0), product of:
                0.13375512 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03819578 = queryNorm
                0.23214069 = fieldWeight in 3261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3261)
          0.33333334 = coord(1/3)
      0.2857143 = coord(2/7)
    
    Abstract
    Ontologies improve IR systems regarding its retrieval and presentation of information, which make the task of finding information more effective, efficient, and interactive. In this paper we argue that ontologies also greatly improve the engineering of such systems. We created a framework that uses ontology to drive the process of engineering an IR system. We developed a prototype that shows how a domain specialist without knowledge in the IR field can build an IR system with interactive components. The resulting system provides support for users not only to find their information needs but also to extend their state of knowledge. This way, our approach to ontology-enabled information retrieval addresses both the engineering aspect described here and also the usability aspect described elsewhere.
    Date
    28.11.2016 12:43:22
  20. Gödert, W.: Facets and typed relations as tools for reasoning processes in information retrieval (2014) 0.01
    0.014403056 = product of:
      0.050410695 = sum of:
        0.038226083 = weight(_text_:retrieval in 1565) [ClassicSimilarity], result of:
          0.038226083 = score(doc=1565,freq=4.0), product of:
            0.11553899 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03819578 = queryNorm
            0.33085006 = fieldWeight in 1565, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1565)
        0.0121846115 = product of:
          0.036553834 = sum of:
            0.036553834 = weight(_text_:29 in 1565) [ClassicSimilarity], result of:
              0.036553834 = score(doc=1565,freq=2.0), product of:
                0.13436082 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03819578 = queryNorm
                0.27205724 = fieldWeight in 1565, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1565)
          0.33333334 = coord(1/3)
      0.2857143 = coord(2/7)
    
    Abstract
    Faceted arrangement of entities and typed relations for representing different associations between the entities are established tools in knowledge representation. In this paper, a proposal is being discussed combining both tools to draw inferences along relational paths. This approach may yield new benefit for information retrieval processes, especially when modeled for heterogeneous environments in the Semantic Web. Faceted arrangement can be used as a selection tool for the semantic knowledge modeled within the knowledge representation. Typed relations between the entities of different facets can be used as restrictions for selecting them across the facets.
    Source
    Metadata and semantics research: 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings. Eds.: S. Closs et al

Authors

Years

Languages

  • e 207
  • d 49
  • pt 2
  • f 1
  • sp 1
  • More… Less…

Types

  • a 179
  • el 75
  • m 26
  • x 20
  • s 11
  • r 3
  • n 2
  • p 2
  • A 1
  • EL 1
  • More… Less…

Subjects

Classifications