Search (4 results, page 1 of 1)

  • × author_ss:"Balog, K."
  • × year_i:[2010 TO 2020}
  1. Hofmann, K.; Balog, K.; Bogers, T.; Rijke, M. de: Contextual factors for finding similar experts (2010) 0.01
    0.0114622535 = product of:
      0.057311267 = sum of:
        0.057311267 = weight(_text_:retrieval in 3456) [ClassicSimilarity], result of:
          0.057311267 = score(doc=3456,freq=12.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.40932083 = fieldWeight in 3456, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3456)
      0.2 = coord(1/5)
    
    Abstract
    Expertise-seeking research studies how people search for expertise and choose whom to contact in the context of a specific task. An important outcome are models that identify factors that influence expert finding. Expertise retrieval addresses the same problem, expert finding, but from a system-centered perspective. The main focus has been on developing content-based algorithms similar to document search. These algorithms identify matching experts primarily on the basis of the textual content of documents with which experts are associated. Other factors, such as the ones identified by expertise-seeking models, are rarely taken into account. In this article, we extend content-based expert-finding approaches with contextual factors that have been found to influence human expert finding. We focus on a task of science communicators in a knowledge-intensive environment, the task of finding similar experts, given an example expert. Our approach combines expertise-seeking and retrieval research. First, we conduct a user study to identify contextual factors that may play a role in the studied task and environment. Then, we design expert retrieval models to capture these factors. We combine these with content-based retrieval models and evaluate them in a retrieval experiment. Our main finding is that while content-based features are the most important, human participants also take contextual factors into account, such as media experience and organizational structure. We develop two principled ways of modeling the identified factors and integrate them with content-based retrieval models. Our experiments show that models combining content-based and contextual factors can significantly outperform existing content-based models.
  2. Balog, K.; Schuth, A.; Dekker, P.; Tavakolpoursaleh, N.; Schaer, P.; Chuang, P.-Y.: Overview of the TREC 2016 Open Search track Academic Search Edition (2016) 0.01
    0.007487112 = product of:
      0.03743556 = sum of:
        0.03743556 = weight(_text_:retrieval in 43) [ClassicSimilarity], result of:
          0.03743556 = score(doc=43,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.26736724 = fieldWeight in 43, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=43)
      0.2 = coord(1/5)
    
    Abstract
    We present the TREC Open Search track, which represents a new evaluation paradigm for information retrieval. It offers the possibility for researchers to evaluate their approaches in a live setting, with real, unsuspecting users of an existing search engine. The first edition of the track focuses on the academic search domain and features the ad-hoc scientific literature search task. We report on experiments with three different academic search engines: Cite-SeerX, SSOAR, and Microsoft Academic Search.
  3. Berendsen, R.; Rijke, M. de; Balog, K.; Bogers, T.; Bosch, A. van den: On the assessment of expertise profiles (2013) 0.01
    0.0066177347 = product of:
      0.033088673 = sum of:
        0.033088673 = weight(_text_:retrieval in 1089) [ClassicSimilarity], result of:
          0.033088673 = score(doc=1089,freq=4.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.23632148 = fieldWeight in 1089, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1089)
      0.2 = coord(1/5)
    
    Abstract
    Expertise retrieval has attracted significant interest in the field of information retrieval. Expert finding has been studied extensively, with less attention going to the complementary task of expert profiling, that is, automatically identifying topics about which a person is knowledgeable. We describe a test collection for expert profiling in which expert users have self-selected their knowledge areas. Motivated by the sparseness of this set of knowledge areas, we report on an assessment experiment in which academic experts judge a profile that has been automatically generated by state-of-the-art expert-profiling algorithms; optionally, experts can indicate a level of expertise for relevant areas. Experts may also give feedback on the quality of the system-generated knowledge areas. We report on a content analysis of these comments and gain insights into what aspects of profiles matter to experts. We provide an error analysis of the system-generated profiles, identifying factors that help explain why certain experts may be harder to profile than others. We also analyze the impact on evaluating expert-profiling systems of using self-selected versus judged system-generated knowledge areas as ground truth; they rank systems somewhat differently but detect about the same amount of pairwise significant differences despite the fact that the judged system-generated assessments are more sparse.
  4. Kenter, T.; Balog, K.; Rijke, M. de: Evaluating document filtering systems over time (2015) 0.01
    0.005294188 = product of:
      0.026470939 = sum of:
        0.026470939 = weight(_text_:retrieval in 2672) [ClassicSimilarity], result of:
          0.026470939 = score(doc=2672,freq=4.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.18905719 = fieldWeight in 2672, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=2672)
      0.2 = coord(1/5)
    
    Abstract
    Document filtering is a popular task in information retrieval. A stream of documents arriving over time is filtered for documents relevant to a set of topics. The distinguishing feature of document filtering is the temporal aspect introduced by the stream of documents. Document filtering systems, up to now, have been evaluated in terms of traditional metrics like (micro- or macro-averaged) precision, recall, MAP, nDCG, F1 and utility. We argue that these metrics do not capture all relevant aspects of the systems being evaluated. In particular, they lack support for the temporal dimension of the task. We propose a time-sensitive way of measuring performance of document filtering systems over time by employing trend estimation. In short, the performance is calculated for batches, a trend line is fitted to the results, and the estimated performance of systems at the end of the evaluation period is used to compare systems. We detail the application of our proposed trend estimation framework and examine the assumptions that need to hold for valid significance testing. Additionally, we analyze the requirements a document filtering metric has to meet and show that traditional macro-averaged true-positive-based metrics, like precision, recall and utility fail to capture essential information when applied in a batch setting. In particular, false positives returned in a batch for topics that are absent from the ground truth in that batch go unnoticed. This is a serious flaw as over-generation of a system might be overlooked this way. We propose a new metric, aptness, that does capture false positives. We incorporate this metric in an overall score and show that this new score does meet all requirements. To demonstrate the results of our proposed evaluation methodology, we analyze the runs submitted to the two most recent editions of a document filtering evaluation campaign. We re-evaluate the runs submitted to the Cumulative Citation Recommendation task of the 2012 and 2013 editions of the TREC Knowledge Base Acceleration track, and show that important new insights emerge.
    Footnote
    Beitrag in einem Themenschwerpunkt "Time and information retrieval"