Search (353 results, page 1 of 18)

  • × theme_ss:"Computerlinguistik"
  1. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.33
    0.3339376 = product of:
      0.41742197 = sum of:
        0.0735167 = product of:
          0.22055008 = sum of:
            0.22055008 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
              0.22055008 = score(doc=562,freq=2.0), product of:
                0.39242527 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.04628742 = queryNorm
                0.56201804 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.33333334 = coord(1/3)
        0.22055008 = weight(_text_:2f in 562) [ClassicSimilarity], result of:
          0.22055008 = score(doc=562,freq=2.0), product of:
            0.39242527 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.04628742 = queryNorm
            0.56201804 = fieldWeight in 562, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.05304678 = weight(_text_:semantic in 562) [ClassicSimilarity], result of:
          0.05304678 = score(doc=562,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.2756298 = fieldWeight in 562, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.07030838 = sum of:
          0.03268054 = weight(_text_:web in 562) [ClassicSimilarity], result of:
            0.03268054 = score(doc=562,freq=2.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.21634221 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
          0.03762784 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
            0.03762784 = score(doc=562,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.23214069 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
      0.8 = coord(4/5)
    
    Abstract
    Document representations for text classification are typically based on the classical Bag-Of-Words paradigm. This approach comes with deficiencies that motivate the integration of features on a higher semantic level than single words. In this paper we propose an enhancement of the classical document representation through concepts extracted from background knowledge. Boosting is used for actual classification. Experimental evaluations on two well known text corpora support our approach through consistent improvement of the results.
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
  2. Huo, W.: Automatic multi-word term extraction and its application to Web-page summarization (2012) 0.21
    0.2109694 = product of:
      0.35161567 = sum of:
        0.028076671 = weight(_text_:retrieval in 563) [ClassicSimilarity], result of:
          0.028076671 = score(doc=563,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.20052543 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.22055008 = weight(_text_:2f in 563) [ClassicSimilarity], result of:
          0.22055008 = score(doc=563,freq=2.0), product of:
            0.39242527 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.04628742 = queryNorm
            0.56201804 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.10298892 = sum of:
          0.06536108 = weight(_text_:web in 563) [ClassicSimilarity], result of:
            0.06536108 = score(doc=563,freq=8.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.43268442 = fieldWeight in 563, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=563)
          0.03762784 = weight(_text_:22 in 563) [ClassicSimilarity], result of:
            0.03762784 = score(doc=563,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.23214069 = fieldWeight in 563, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=563)
      0.6 = coord(3/5)
    
    Abstract
    In this thesis we propose three new word association measures for multi-word term extraction. We combine these association measures with LocalMaxs algorithm in our extraction model and compare the results of different multi-word term extraction methods. Our approach is language and domain independent and requires no training data. It can be applied to such tasks as text summarization, information retrieval, and document classification. We further explore the potential of using multi-word terms as an effective representation for general web-page summarization. We extract multi-word terms from human written summaries in a large collection of web-pages, and generate the summaries by aligning document words with these multi-word terms. Our system applies machine translation technology to learn the aligning process from a training set and focuses on selecting high quality multi-word terms from human written summaries to generate suitable results for web-page summarization.
    Content
    A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Computer Science. Vgl. Unter: http://www.inf.ufrgs.br%2F~ceramisch%2Fdownload_files%2Fpublications%2F2009%2Fp01.pdf.
    Date
    10. 1.2013 19:22:47
  3. Byrne, C.C.; McCracken, S.A.: ¬An adaptive thesaurus employing semantic distance, relational inheritance and nominal compound interpretation for linguistic support of information retrieval (1999) 0.12
    0.11992486 = product of:
      0.19987476 = sum of:
        0.056153342 = weight(_text_:retrieval in 4483) [ClassicSimilarity], result of:
          0.056153342 = score(doc=4483,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.40105087 = fieldWeight in 4483, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.09375 = fieldNorm(doc=4483)
        0.10609356 = weight(_text_:semantic in 4483) [ClassicSimilarity], result of:
          0.10609356 = score(doc=4483,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.5512596 = fieldWeight in 4483, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.09375 = fieldNorm(doc=4483)
        0.03762784 = product of:
          0.07525568 = sum of:
            0.07525568 = weight(_text_:22 in 4483) [ClassicSimilarity], result of:
              0.07525568 = score(doc=4483,freq=2.0), product of:
                0.16209066 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04628742 = queryNorm
                0.46428138 = fieldWeight in 4483, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4483)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Date
    15. 3.2000 10:22:37
  4. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.12
    0.11762672 = product of:
      0.2940668 = sum of:
        0.0735167 = product of:
          0.22055008 = sum of:
            0.22055008 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.22055008 = score(doc=862,freq=2.0), product of:
                0.39242527 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.04628742 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.33333334 = coord(1/3)
        0.22055008 = weight(_text_:2f in 862) [ClassicSimilarity], result of:
          0.22055008 = score(doc=862,freq=2.0), product of:
            0.39242527 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.04628742 = queryNorm
            0.56201804 = fieldWeight in 862, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=862)
      0.4 = coord(2/5)
    
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
  5. Schneider, R.: Web 3.0 ante portas? : Integration von Social Web und Semantic Web (2008) 0.10
    0.10078701 = product of:
      0.25196752 = sum of:
        0.10719301 = weight(_text_:semantic in 4184) [ClassicSimilarity], result of:
          0.10719301 = score(doc=4184,freq=6.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.55697227 = fieldWeight in 4184, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4184)
        0.14477451 = sum of:
          0.10087536 = weight(_text_:web in 4184) [ClassicSimilarity], result of:
            0.10087536 = score(doc=4184,freq=14.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.6677857 = fieldWeight in 4184, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4184)
          0.043899145 = weight(_text_:22 in 4184) [ClassicSimilarity], result of:
            0.043899145 = score(doc=4184,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.2708308 = fieldWeight in 4184, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4184)
      0.4 = coord(2/5)
    
    Abstract
    Das Medium Internet ist im Wandel, und mit ihm ändern sich seine Publikations- und Rezeptionsbedingungen. Welche Chancen bieten die momentan parallel diskutierten Zukunftsentwürfe von Social Web und Semantic Web? Zur Beantwortung dieser Frage beschäftigt sich der Beitrag mit den Grundlagen beider Modelle unter den Aspekten Anwendungsbezug und Technologie, beleuchtet darüber hinaus jedoch auch deren Unzulänglichkeiten sowie den Mehrwert einer mediengerechten Kombination. Am Beispiel des grammatischen Online-Informationssystems grammis wird eine Strategie zur integrativen Nutzung der jeweiligen Stärken skizziert.
    Date
    22. 1.2011 10:38:28
    Source
    Kommunikation, Partizipation und Wirkungen im Social Web, Band 1. Hrsg.: A. Zerfaß u.a
    Theme
    Semantic Web
  6. Rajasurya, S.; Muralidharan, T.; Devi, S.; Swamynathan, S.: Semantic information retrieval using ontology in university domain (2012) 0.09
    0.08924026 = product of:
      0.14873376 = sum of:
        0.033088673 = weight(_text_:retrieval in 2861) [ClassicSimilarity], result of:
          0.033088673 = score(doc=2861,freq=4.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.23632148 = fieldWeight in 2861, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2861)
        0.0884113 = weight(_text_:semantic in 2861) [ClassicSimilarity], result of:
          0.0884113 = score(doc=2861,freq=8.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.45938298 = fieldWeight in 2861, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2861)
        0.027233787 = product of:
          0.054467574 = sum of:
            0.054467574 = weight(_text_:web in 2861) [ClassicSimilarity], result of:
              0.054467574 = score(doc=2861,freq=8.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.36057037 = fieldWeight in 2861, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2861)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Today's conventional search engines hardly do provide the essential content relevant to the user's search query. This is because the context and semantics of the request made by the user is not analyzed to the full extent. So here the need for a semantic web search arises. SWS is upcoming in the area of web search which combines Natural Language Processing and Artificial Intelligence. The objective of the work done here is to design, develop and implement a semantic search engine- SIEU(Semantic Information Extraction in University Domain) confined to the university domain. SIEU uses ontology as a knowledge base for the information retrieval process. It is not just a mere keyword search. It is one layer above what Google or any other search engines retrieve by analyzing just the keywords. Here the query is analyzed both syntactically and semantically. The developed system retrieves the web results more relevant to the user query through keyword expansion. The results obtained here will be accurate enough to satisfy the request made by the user. The level of accuracy will be enhanced since the query is analyzed semantically. The system will be of great use to the developers and researchers who work on web. The Google results are re-ranked and optimized for providing the relevant links. For ranking an algorithm has been applied which fetches more apt results for the user query.
  7. Rettinger, A.; Schumilin, A.; Thoma, S.; Ell, B.: Learning a cross-lingual semantic representation of relations expressed in text (2015) 0.08
    0.08012127 = product of:
      0.20030317 = sum of:
        0.15313287 = weight(_text_:semantic in 2027) [ClassicSimilarity], result of:
          0.15313287 = score(doc=2027,freq=6.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.7956747 = fieldWeight in 2027, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.078125 = fieldNorm(doc=2027)
        0.0471703 = product of:
          0.0943406 = sum of:
            0.0943406 = weight(_text_:web in 2027) [ClassicSimilarity], result of:
              0.0943406 = score(doc=2027,freq=6.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.6245262 = fieldWeight in 2027, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2027)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Series
    Information Systems and Applications, incl. Internet/Web, and HCI; Bd. 9088
    Source
    The Semantic Web: latest advances and new domains. 12th European Semantic Web Conference, ESWC 2015 Portoroz, Slovenia, May 31 -- June 4, 2015. Proceedings. Eds.: F. Gandon u.a
  8. Yang, C.C.; Luk, J.: Automatic generation of English/Chinese thesaurus based on a parallel corpus in laws (2003) 0.08
    0.07932353 = product of:
      0.13220587 = sum of:
        0.02836763 = weight(_text_:retrieval in 1616) [ClassicSimilarity], result of:
          0.02836763 = score(doc=1616,freq=6.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.20260347 = fieldWeight in 1616, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1616)
        0.043761365 = weight(_text_:semantic in 1616) [ClassicSimilarity], result of:
          0.043761365 = score(doc=1616,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.22738299 = fieldWeight in 1616, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1616)
        0.060076877 = sum of:
          0.038127303 = weight(_text_:web in 1616) [ClassicSimilarity], result of:
            0.038127303 = score(doc=1616,freq=8.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.25239927 = fieldWeight in 1616, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1616)
          0.021949572 = weight(_text_:22 in 1616) [ClassicSimilarity], result of:
            0.021949572 = score(doc=1616,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.1354154 = fieldWeight in 1616, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1616)
      0.6 = coord(3/5)
    
    Abstract
    The information available in languages other than English in the World Wide Web is increasing significantly. According to a report from Computer Economics in 1999, 54% of Internet users are English speakers ("English Will Dominate Web for Only Three More Years," Computer Economics, July 9, 1999, http://www.computereconomics. com/new4/pr/pr990610.html). However, it is predicted that there will be only 60% increase in Internet users among English speakers verses a 150% growth among nonEnglish speakers for the next five years. By 2005, 57% of Internet users will be non-English speakers. A report by CNN.com in 2000 showed that the number of Internet users in China had been increased from 8.9 million to 16.9 million from January to June in 2000 ("Report: China Internet users double to 17 million," CNN.com, July, 2000, http://cnn.org/2000/TECH/computing/07/27/ china.internet.reut/index.html). According to Nielsen/ NetRatings, there was a dramatic leap from 22.5 millions to 56.6 millions Internet users from 2001 to 2002. China had become the second largest global at-home Internet population in 2002 (US's Internet population was 166 millions) (Robyn Greenspan, "China Pulls Ahead of Japan," Internet.com, April 22, 2002, http://cyberatias.internet.com/big-picture/geographics/article/0,,5911_1013841,00. html). All of the evidences reveal the importance of crosslingual research to satisfy the needs in the near future. Digital library research has been focusing in structural and semantic interoperability in the past. Searching and retrieving objects across variations in protocols, formats and disciplines are widely explored (Schatz, B., & Chen, H. (1999). Digital libraries: technological advances and social impacts. IEEE Computer, Special Issue an Digital Libraries, February, 32(2), 45-50.; Chen, H., Yen, J., & Yang, C.C. (1999). International activities: development of Asian digital libraries. IEEE Computer, Special Issue an Digital Libraries, 32(2), 48-49.). However, research in crossing language boundaries, especially across European languages and Oriental languages, is still in the initial stage. In this proposal, we put our focus an cross-lingual semantic interoperability by developing automatic generation of a cross-lingual thesaurus based an English/Chinese parallel corpus. When the searchers encounter retrieval problems, Professional librarians usually consult the thesaurus to identify other relevant vocabularies. In the problem of searching across language boundaries, a cross-lingual thesaurus, which is generated by co-occurrence analysis and Hopfield network, can be used to generate additional semantically relevant terms that cannot be obtained from dictionary. In particular, the automatically generated cross-lingual thesaurus is able to capture the unknown words that do not exist in a dictionary, such as names of persons, organizations, and events. Due to Hong Kong's unique history background, both English and Chinese are used as official languages in all legal documents. Therefore, English/Chinese cross-lingual information retrieval is critical for applications in courts and the government. In this paper, we develop an automatic thesaurus by the Hopfield network based an a parallel corpus collected from the Web site of the Department of Justice of the Hong Kong Special Administrative Region (HKSAR) Government. Experiments are conducted to measure the precision and recall of the automatic generated English/Chinese thesaurus. The result Shows that such thesaurus is a promising tool to retrieve relevant terms, especially in the language that is not the same as the input term. The direct translation of the input term can also be retrieved in most of the cases.
    Footnote
    Teil eines Themenheftes: "Web retrieval and mining: A machine learning perspective"
  9. Sembok, T.M.T.; Rijsbergen, C.J. van: SILOL: a simple logical-linguistic document retrieval system (1990) 0.08
    0.0766896 = product of:
      0.191724 = sum of:
        0.09169802 = weight(_text_:retrieval in 6684) [ClassicSimilarity], result of:
          0.09169802 = score(doc=6684,freq=12.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.6549133 = fieldWeight in 6684, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=6684)
        0.100025974 = weight(_text_:semantic in 6684) [ClassicSimilarity], result of:
          0.100025974 = score(doc=6684,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.51973253 = fieldWeight in 6684, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0625 = fieldNorm(doc=6684)
      0.4 = coord(2/5)
    
    Abstract
    Describes a system called SILOL which is based on a logical-linguistic model of document retrieval systems. SILOL uses a shallow semantic translation of natural language texts into a first order predicate representation in performing a document indexing and retrieval process. Some preliminary experiments have been carried out to test the retrieval effectiveness of this system. The results obtained show improvements in the level of retrieval effectiveness, which demonstrate that the approach of using a semantic theory of natural language and logic in document retrieval systems is a valid one
  10. Rindflesch, T.C.; Aronson, A.R.: Semantic processing in information retrieval (1993) 0.07
    0.07217517 = product of:
      0.18043792 = sum of:
        0.07324491 = weight(_text_:retrieval in 4121) [ClassicSimilarity], result of:
          0.07324491 = score(doc=4121,freq=10.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.5231199 = fieldWeight in 4121, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4121)
        0.10719301 = weight(_text_:semantic in 4121) [ClassicSimilarity], result of:
          0.10719301 = score(doc=4121,freq=6.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.55697227 = fieldWeight in 4121, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4121)
      0.4 = coord(2/5)
    
    Abstract
    Intuition suggests that one way to enhance the information retrieval process would be the use of phrases to characterize the contents of text. A number of researchers, however, have noted that phrases alone do not improve retrieval effectiveness. In this paper we briefly review the use of phrases in information retrieval and then suggest extensions to this paradigm using semantic information. We claim that semantic processing, which can be viewed as expressing relations between the concepts represented by phrases, will in fact enhance retrieval effectiveness. The availability of the UMLS® domain model, which we exploit extensively, significantly contributes to the feasibility of this processing.
  11. Jacquemin, C.: Spotting and discovering terms through natural language processing (2001) 0.07
    0.0660842 = product of:
      0.11014032 = sum of:
        0.052317787 = weight(_text_:retrieval in 119) [ClassicSimilarity], result of:
          0.052317787 = score(doc=119,freq=10.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.37365708 = fieldWeight in 119, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=119)
        0.04420565 = weight(_text_:semantic in 119) [ClassicSimilarity], result of:
          0.04420565 = score(doc=119,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.22969149 = fieldWeight in 119, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=119)
        0.013616893 = product of:
          0.027233787 = sum of:
            0.027233787 = weight(_text_:web in 119) [ClassicSimilarity], result of:
              0.027233787 = score(doc=119,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.18028519 = fieldWeight in 119, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=119)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    In this book Christian Jacquemin shows how the power of natural language processing (NLP) can be used to advance text indexing and information retrieval (IR). Jacquemin's novel tool is FASTR, a parser that normalizes terms and recognizes term variants. Since there are more meanings in a language than there are words, FASTR uses a metagrammar composed of shallow linguistic transformations that describe the morphological, syntactic, semantic, and pragmatic variations of words and terms. The acquired parsed terms can then be applied for precise retrieval and assembly of information. The use of a corpus-based unification grammar to define, recognize, and combine term variants from their base forms allows for intelligent information access to, or "linguistic data tuning" of, heterogeneous texts. FASTR can be used to do automatic controlled indexing, to carry out content-based Web searches through conceptually related alternative query formulations, to abstract scientific and technical extracts, and even to translate and collect terms from multilingual material. Jacquemin provides a comprehensive account of the method and implementation of this innovative retrieval technique for text processing.
    RSWK
    Automatische Indexierung  / Computerlinguistik  / Information Retrieval
    Subject
    Automatische Indexierung  / Computerlinguistik  / Information Retrieval
  12. Hsinchun, C.: Knowledge-based document retrieval framework and design (1992) 0.07
    0.06594651 = product of:
      0.16486627 = sum of:
        0.064840294 = weight(_text_:retrieval in 6686) [ClassicSimilarity], result of:
          0.064840294 = score(doc=6686,freq=6.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.46309367 = fieldWeight in 6686, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=6686)
        0.100025974 = weight(_text_:semantic in 6686) [ClassicSimilarity], result of:
          0.100025974 = score(doc=6686,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.51973253 = fieldWeight in 6686, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0625 = fieldNorm(doc=6686)
      0.4 = coord(2/5)
    
    Abstract
    Presents research on the design of knowledge-based document retrieval systems in which a semantic network was adopted to represent subject knowledge and classification scheme knowledge and experts' search strategies and user modelling capability were modelled as procedural knowledge. These functionalities were incorporated into a prototype knowledge-based retrieval system, Metacat. Describes a system, the design of which was based on the blackboard architecture, which was able to create a user profile, identify task requirements, suggest heuristics-based search strategies, perform semantic-based search assistance, and assist online query refinement
  13. Ruge, G.: Experiments on linguistically-based term associations (1992) 0.06
    0.06397674 = product of:
      0.15994185 = sum of:
        0.03743556 = weight(_text_:retrieval in 1810) [ClassicSimilarity], result of:
          0.03743556 = score(doc=1810,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.26736724 = fieldWeight in 1810, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=1810)
        0.1225063 = weight(_text_:semantic in 1810) [ClassicSimilarity], result of:
          0.1225063 = score(doc=1810,freq=6.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.63653976 = fieldWeight in 1810, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0625 = fieldNorm(doc=1810)
      0.4 = coord(2/5)
    
    Abstract
    Describes the hyperterm system REALIST (REtrieval Aids by LInguistic and STatistics) and describes its semantic component. The semantic component of REALIST generates semantic term relations such synonyms. It takes as input a free text data base and generates as output term pairs that are semantically related with respect to their meanings in the data base. In the 1st step an automatic syntactic analysis provides linguistical knowledge about the terms of the data base. In the 2nd step this knowledge is compared by statistical similarity computation. Various experiments with different similarity measures are described
  14. Richardson, R.; Smeaton, A.F.: Automatic word sense disambiguation in a KBIR application (1995) 0.06
    0.06397674 = product of:
      0.15994185 = sum of:
        0.03743556 = weight(_text_:retrieval in 5796) [ClassicSimilarity], result of:
          0.03743556 = score(doc=5796,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.26736724 = fieldWeight in 5796, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=5796)
        0.1225063 = weight(_text_:semantic in 5796) [ClassicSimilarity], result of:
          0.1225063 = score(doc=5796,freq=6.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.63653976 = fieldWeight in 5796, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0625 = fieldNorm(doc=5796)
      0.4 = coord(2/5)
    
    Abstract
    Discusses the implementation and design of an automatic word sense disambiguator. The semantic tagger is used in an overall Knowledge Based Information Retrieval (KBIR) system which uses a WordNet derived knowledge base (KB) and 2 independent semantic similarity estimators. The KB is used as a controlled vocabulary to represent documents and queries and the semantic similarity estimators are employed to determine the degree of relatedness between the KB representations
  15. Herrera-Viedma, E.: Modeling the retrieval process for an information retrieval system using an ordinal fuzzy linguistic approach (2001) 0.06
    0.062992945 = product of:
      0.15748236 = sum of:
        0.040525187 = weight(_text_:retrieval in 5752) [ClassicSimilarity], result of:
          0.040525187 = score(doc=5752,freq=6.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.28943354 = fieldWeight in 5752, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5752)
        0.116957165 = weight(_text_:semantic in 5752) [ClassicSimilarity], result of:
          0.116957165 = score(doc=5752,freq=14.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.6077066 = fieldWeight in 5752, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5752)
      0.4 = coord(2/5)
    
    Abstract
    A linguistic model for an Information Retrieval System (IRS) defined using an ordinal fuzzy linguistic approach is proposed. The ordinal fuzzy linguistic approach is presented, and its use for modeling the imprecision and subjectivity that appear in the user-IRS interaction is studied. The user queries and IRS responses are modeled linguistically using the concept of fuzzy linguistic variables. The system accepts Boolean queries whose terms can be weighted simultaneously by means of ordinal linguistic values according to three possible semantics: a symmetrical threshold semantic, a quantitative semantic, and an importance semantic. The first one identifies a new threshold semantic used to express qualitative restrictions on the documents retrieved for a given term. It is monotone increasing in index term weight for the threshold values that are on the right of the mid-value, and decreasing for the threshold values that are on the left of the mid-value. The second one is a new semantic proposal introduced to express quantitative restrictions on the documents retrieved for a term, i.e., restrictions on the number of documents that must be retrieved containing that term. The last one is the usual semantic of relative importance that has an effect when the term is in a Boolean expression. A bottom-up evaluation mechanism of queries is presented that coherently integrates the use of the three semantics and satisfies the separability property. The advantage of this IRS with respect to others is that users can express linguistically different semantic restrictions on the desired documents simultaneously, incorporating more flexibility in the user-IRS interaction
  16. Granitzer, M.: Statistische Verfahren der Textanalyse (2006) 0.06
    0.06271801 = product of:
      0.15679502 = sum of:
        0.12377582 = weight(_text_:semantic in 5809) [ClassicSimilarity], result of:
          0.12377582 = score(doc=5809,freq=8.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.64313614 = fieldWeight in 5809, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5809)
        0.03301921 = product of:
          0.06603842 = sum of:
            0.06603842 = weight(_text_:web in 5809) [ClassicSimilarity], result of:
              0.06603842 = score(doc=5809,freq=6.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.43716836 = fieldWeight in 5809, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5809)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Der vorliegende Artikel bietet einen Überblick über statistische Verfahren der Textanalyse im Kontext des Semantic Webs. Als Einleitung erfolgt die Diskussion von Methoden und gängigen Techniken zur Vorverarbeitung von Texten wie z. B. Stemming oder Part-of-Speech Tagging. Die so eingeführten Repräsentationsformen dienen als Basis für statistische Merkmalsanalysen sowie für weiterführende Techniken wie Information Extraction und maschinelle Lernverfahren. Die Darstellung dieser speziellen Techniken erfolgt im Überblick, wobei auf die wichtigsten Aspekte in Bezug auf das Semantic Web detailliert eingegangen wird. Die Anwendung der vorgestellten Techniken zur Erstellung und Wartung von Ontologien sowie der Verweis auf weiterführende Literatur bilden den Abschluss dieses Artikels.
    Source
    Semantic Web: Wege zur vernetzten Wissensgesellschaft. Hrsg.: T. Pellegrini, u. A. Blumauer
    Theme
    Semantic Web
  17. Clark, M.; Kim, Y.; Kruschwitz, U.; Song, D.; Albakour, D.; Dignum, S.; Beresi, U.C.; Fasli, M.; Roeck, A De: Automatically structuring domain knowledge from text : an overview of current research (2012) 0.06
    0.06253926 = product of:
      0.10423209 = sum of:
        0.028076671 = weight(_text_:retrieval in 2738) [ClassicSimilarity], result of:
          0.028076671 = score(doc=2738,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.20052543 = fieldWeight in 2738, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2738)
        0.05304678 = weight(_text_:semantic in 2738) [ClassicSimilarity], result of:
          0.05304678 = score(doc=2738,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.2756298 = fieldWeight in 2738, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=2738)
        0.023108633 = product of:
          0.046217266 = sum of:
            0.046217266 = weight(_text_:web in 2738) [ClassicSimilarity], result of:
              0.046217266 = score(doc=2738,freq=4.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.3059541 = fieldWeight in 2738, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2738)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    This paper presents an overview of automatic methods for building domain knowledge structures (domain models) from text collections. Applications of domain models have a long history within knowledge engineering and artificial intelligence. In the last couple of decades they have surfaced noticeably as a useful tool within natural language processing, information retrieval and semantic web technology. Inspired by the ubiquitous propagation of domain model structures that are emerging in several research disciplines, we give an overview of the current research landscape and some techniques and approaches. We will also discuss trade-offs between different approaches and point to some recent trends.
    Content
    Beitrag in einem Themenheft "Soft Approaches to IA on the Web". Vgl.: doi:10.1016/j.ipm.2011.07.002.
  18. Chowdhury, G.G.: Natural language processing and information retrieval : pt.1: basic issues; pt.2: major applications (1991) 0.06
    0.061835457 = product of:
      0.15458864 = sum of:
        0.066177346 = weight(_text_:retrieval in 3313) [ClassicSimilarity], result of:
          0.066177346 = score(doc=3313,freq=4.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.47264296 = fieldWeight in 3313, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=3313)
        0.0884113 = weight(_text_:semantic in 3313) [ClassicSimilarity], result of:
          0.0884113 = score(doc=3313,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.45938298 = fieldWeight in 3313, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.078125 = fieldNorm(doc=3313)
      0.4 = coord(2/5)
    
    Abstract
    Reviews the basic issues and procedures involved in natural language processing of textual material for final use in information retrieval. Covers: natural language processing; natural language understanding; syntactic and semantic analysis; parsing; knowledge bases and knowledge representation
  19. Nait-Baha, L.; Jackiewicz, A.; Djioua, B.; Laublet, P.: Query reformulation for information retrieval on the Web using the point of view methodology : preliminary results (2001) 0.06
    0.05847824 = product of:
      0.09746373 = sum of:
        0.028076671 = weight(_text_:retrieval in 249) [ClassicSimilarity], result of:
          0.028076671 = score(doc=249,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.20052543 = fieldWeight in 249, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=249)
        0.05304678 = weight(_text_:semantic in 249) [ClassicSimilarity], result of:
          0.05304678 = score(doc=249,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.2756298 = fieldWeight in 249, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=249)
        0.01634027 = product of:
          0.03268054 = sum of:
            0.03268054 = weight(_text_:web in 249) [ClassicSimilarity], result of:
              0.03268054 = score(doc=249,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.21634221 = fieldWeight in 249, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=249)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    The work we are presenting is devoted to the information collected on the WWW. By the term collected we mean the whole process of retrieving, extracting and presenting results to the user. This research is part of the RAP (Research, Analyze, Propose) project in which we propose to combine two methods: (i) query reformulation using linguistic markers according to a given point of view; and (ii) text semantic analysis by means of contextual exploration results (Descles, 1991). The general project architecture describing the interactions between the users, the RAP system and the WWW search engines is presented in Nait-Baha et al. (1998). We will focus this paper on showing how we use linguistic markers to reformulate the queries according to a given point of view
  20. Niemi, T.; Jämsen , J.: ¬A query language for discovering semantic associations, part I : approach and formal definition of query primitives (2007) 0.06
    0.05614176 = product of:
      0.1403544 = sum of:
        0.023397226 = weight(_text_:retrieval in 591) [ClassicSimilarity], result of:
          0.023397226 = score(doc=591,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.16710453 = fieldWeight in 591, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=591)
        0.116957165 = weight(_text_:semantic in 591) [ClassicSimilarity], result of:
          0.116957165 = score(doc=591,freq=14.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.6077066 = fieldWeight in 591, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=591)
      0.4 = coord(2/5)
    
    Abstract
    In contemporary query languages, the user is responsible for navigation among semantically related data. Because of the huge amount of data and the complex structural relationships among data in modern applications, it is unrealistic to suppose that the user could know completely the content and structure of the available information. There are several query languages whose purpose is to facilitate navigation in unknown structures of databases. However, the background assumption of these languages is that the user knows how data are related to each other semantically in the structure at hand. So far only little attention has been paid to how unknown semantic associations among available data can be discovered. We address this problem in this article. A semantic association between two entities can be constructed if a sequence of relationships expressed explicitly in a database can be found that connects these entities to each other. This sequence may contain several other entities through which the original entities are connected to each other indirectly. We introduce an expressive and declarative query language for discovering semantic associations. Our query language is able, for example, to discover semantic associations between entities for which only some of the characteristics are known. Further, it integrates the manipulation of semantic associations with the manipulation of documents that may contain information on entities in semantic associations.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval

Authors

Years

Languages

Types

  • a 296
  • m 31
  • el 25
  • s 17
  • x 10
  • b 2
  • p 2
  • d 1
  • r 1
  • More… Less…

Subjects

Classifications