Search (98 results, page 1 of 5)

  • × theme_ss:"Literaturübersicht"
  1. Legg, C.: Ontologies on the Semantic Web (2007) 0.08
    0.0816926 = product of:
      0.13615432 = sum of:
        0.01871778 = weight(_text_:retrieval in 1979) [ClassicSimilarity], result of:
          0.01871778 = score(doc=1979,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.13368362 = fieldWeight in 1979, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=1979)
        0.08662503 = weight(_text_:semantic in 1979) [ClassicSimilarity], result of:
          0.08662503 = score(doc=1979,freq=12.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.45010158 = fieldWeight in 1979, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.03125 = fieldNorm(doc=1979)
        0.030811511 = product of:
          0.061623022 = sum of:
            0.061623022 = weight(_text_:web in 1979) [ClassicSimilarity], result of:
              0.061623022 = score(doc=1979,freq=16.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.4079388 = fieldWeight in 1979, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1979)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    As an informational technology, the World Wide Web has enjoyed spectacular success. In just ten years it has transformed the way information is produced, stored, and shared in arenas as diverse as shopping, family photo albums, and high-level academic research. The "Semantic Web" is touted by its developers as equally revolutionary, although it has not yet achieved anything like the Web's exponential uptake. It seeks to transcend a current limitation of the Web - that it largely requires indexing to be accomplished merely on specific character strings. Thus, a person searching for information about "turkey" (the bird) receives from current search engines many irrelevant pages about "Turkey" (the country) and nothing about the Spanish "pavo" even if he or she is a Spanish-speaker able to understand such pages. The Semantic Web vision is to develop technology to facilitate retrieval of information via meanings, not just spellings. For this to be possible, most commentators believe, Semantic Web applications will have to draw on some kind of shared, structured, machine-readable conceptual scheme. Thus, there has been a convergence between the Semantic Web research community and an older tradition with roots in classical Artificial Intelligence (AI) research (sometimes referred to as "knowledge representation") whose goal is to develop a formal ontology. A formal ontology is a machine-readable theory of the most fundamental concepts or "categories" required in order to understand information pertaining to any knowledge domain. A review of the attempts that have been made to realize this goal provides an opportunity to reflect in interestingly concrete ways on various research questions such as the following: - How explicit a machine-understandable theory of meaning is it possible or practical to construct? - How universal a machine-understandable theory of meaning is it possible or practical to construct? - How much (and what kind of) inference support is required to realize a machine-understandable theory of meaning? - What is it for a theory of meaning to be machine-understandable anyway?
    Theme
    Semantic Web
  2. Khoo, S.G.; Na, J.-C.: Semantic relations in information science (2006) 0.07
    0.07227203 = product of:
      0.12045339 = sum of:
        0.024315111 = weight(_text_:retrieval in 1978) [ClassicSimilarity], result of:
          0.024315111 = score(doc=1978,freq=6.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.17366013 = fieldWeight in 1978, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
        0.08796814 = weight(_text_:semantic in 1978) [ClassicSimilarity], result of:
          0.08796814 = score(doc=1978,freq=22.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.45708033 = fieldWeight in 1978, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
        0.008170135 = product of:
          0.01634027 = sum of:
            0.01634027 = weight(_text_:web in 1978) [ClassicSimilarity], result of:
              0.01634027 = score(doc=1978,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.108171105 = fieldWeight in 1978, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1978)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    This chapter examines the nature of semantic relations and their main applications in information science. The nature and types of semantic relations are discussed from the perspectives of linguistics and psychology. An overview of the semantic relations used in knowledge structures such as thesauri and ontologies is provided, as well as the main techniques used in the automatic extraction of semantic relations from text. The chapter then reviews the use of semantic relations in information extraction, information retrieval, question-answering, and automatic text summarization applications. Concepts and relations are the foundation of knowledge and thought. When we look at the world, we perceive not a mass of colors but objects to which we automatically assign category labels. Our perceptual system automatically segments the world into concepts and categories. Concepts are the building blocks of knowledge; relations act as the cement that links concepts into knowledge structures. We spend much of our lives identifying regular associations and relations between objects, events, and processes so that the world has an understandable structure and predictability. Our lives and work depend on the accuracy and richness of this knowledge structure and its web of relations. Relations are needed for reasoning and inferencing. Chaffin and Herrmann (1988b, p. 290) noted that "relations between ideas have long been viewed as basic to thought, language, comprehension, and memory." Aristotle's Metaphysics (Aristotle, 1961; McKeon, expounded on several types of relations. The majority of the 30 entries in a section of the Metaphysics known today as the Philosophical Lexicon referred to relations and attributes, including cause, part-whole, same and opposite, quality (i.e., attribute) and kind-of, and defined different types of each relation. Hume (1955) pointed out that there is a connection between successive ideas in our minds, even in our dreams, and that the introduction of an idea in our mind automatically recalls an associated idea. He argued that all the objects of human reasoning are divided into relations of ideas and matters of fact and that factual reasoning is founded on the cause-effect relation. His Treatise of Human Nature identified seven kinds of relations: resemblance, identity, relations of time and place, proportion in quantity or number, degrees in quality, contrariety, and causation. Mill (1974, pp. 989-1004) discoursed on several types of relations, claiming that all things are either feelings, substances, or attributes, and that attributes can be a quality (which belongs to one object) or a relation to other objects.
    Linguists in the structuralist tradition (e.g., Lyons, 1977; Saussure, 1959) have asserted that concepts cannot be defined on their own but only in relation to other concepts. Semantic relations appear to reflect a logical structure in the fundamental nature of thought (Caplan & Herrmann, 1993). Green, Bean, and Myaeng (2002) noted that semantic relations play a critical role in how we represent knowledge psychologically, linguistically, and computationally, and that many systems of knowledge representation start with a basic distinction between entities and relations. Green (2001, p. 3) said that "relationships are involved as we combine simple entities to form more complex entities, as we compare entities, as we group entities, as one entity performs a process on another entity, and so forth. Indeed, many things that we might initially regard as basic and elemental are revealed upon further examination to involve internal structure, or in other words, internal relationships." Concepts and relations are often expressed in language and text. Language is used not just for communicating concepts and relations, but also for representing, storing, and reasoning with concepts and relations. We shall examine the nature of semantic relations from a linguistic and psychological perspective, with an emphasis on relations expressed in text. The usefulness of semantic relations in information science, especially in ontology construction, information extraction, information retrieval, question-answering, and text summarization is discussed. Research and development in information science have focused on concepts and terms, but the focus will increasingly shift to the identification, processing, and management of relations to achieve greater effectiveness and refinement in information science techniques. Previous chapters in ARIST on natural language processing (Chowdhury, 2003), text mining (Trybula, 1999), information retrieval and the philosophy of language (Blair, 2003), and query expansion (Efthimiadis, 1996) provide a background for this discussion, as semantic relations are an important part of these applications.
  3. Dumais, S.T.: Latent semantic analysis (2003) 0.07
    0.065755956 = product of:
      0.10959325 = sum of:
        0.042115007 = weight(_text_:retrieval in 2462) [ClassicSimilarity], result of:
          0.042115007 = score(doc=2462,freq=18.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.30078813 = fieldWeight in 2462, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2462)
        0.059308108 = weight(_text_:semantic in 2462) [ClassicSimilarity], result of:
          0.059308108 = score(doc=2462,freq=10.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.3081635 = fieldWeight in 2462, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2462)
        0.008170135 = product of:
          0.01634027 = sum of:
            0.01634027 = weight(_text_:web in 2462) [ClassicSimilarity], result of:
              0.01634027 = score(doc=2462,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.108171105 = fieldWeight in 2462, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2462)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Latent Semantic Analysis (LSA) was first introduced in Dumais, Furnas, Landauer, and Deerwester (1988) and Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) as a technique for improving information retrieval. The key insight in LSA was to reduce the dimensionality of the information retrieval problem. Most approaches to retrieving information depend an a lexical match between words in the user's query and those in documents. Indeed, this lexical matching is the way that the popular Web and enterprise search engines work. Such systems are, however, far from ideal. We are all aware of the tremendous amount of irrelevant information that is retrieved when searching. We also fail to find much of the existing relevant material. LSA was designed to address these retrieval problems, using dimension reduction techniques. Fundamental characteristics of human word usage underlie these retrieval failures. People use a wide variety of words to describe the same object or concept (synonymy). Furnas, Landauer, Gomez, and Dumais (1987) showed that people generate the same keyword to describe well-known objects only 20 percent of the time. Poor agreement was also observed in studies of inter-indexer consistency (e.g., Chan, 1989; Tarr & Borko, 1974) in the generation of search terms (e.g., Fidel, 1985; Bates, 1986), and in the generation of hypertext links (Furner, Ellis, & Willett, 1999). Because searchers and authors often use different words, relevant materials are missed. Someone looking for documents an "human-computer interaction" will not find articles that use only the phrase "man-machine studies" or "human factors." People also use the same word to refer to different things (polysemy). Words like "saturn," "jaguar," or "chip" have several different meanings. A short query like "saturn" will thus return many irrelevant documents. The query "Saturn Gar" will return fewer irrelevant items, but it will miss some documents that use only the terms "Saturn automobile." In searching, there is a constant tension between being overly specific and missing relevant information, and being more general and returning irrelevant information.
    A number of approaches have been developed in information retrieval to address the problems caused by the variability in word usage. Stemming is a popular technique used to normalize some kinds of surface-level variability by converting words to their morphological root. For example, the words "retrieve," "retrieval," "retrieved," and "retrieving" would all be converted to their root form, "retrieve." The root form is used for both document and query processing. Stemming sometimes helps retrieval, although not much (Harman, 1991; Hull, 1996). And, it does not address Gases where related words are not morphologically related (e.g., physician and doctor). Controlled vocabularies have also been used to limit variability by requiring that query and index terms belong to a pre-defined set of terms. Documents are indexed by a specified or authorized list of subject headings or index terms, called the controlled vocabulary. Library of Congress Subject Headings, Medical Subject Headings, Association for Computing Machinery (ACM) keywords, and Yellow Pages headings are examples of controlled vocabularies. If searchers can find the right controlled vocabulary terms, they do not have to think of all the morphologically related or synonymous terms that authors might have used. However, assigning controlled vocabulary terms in a consistent and thorough manner is a time-consuming and usually manual process. A good deal of research has been published about the effectiveness of controlled vocabulary indexing compared to full text indexing (e.g., Bates, 1998; Lancaster, 1986; Svenonius, 1986). The combination of both full text and controlled vocabularies is often better than either alone, although the size of the advantage is variable (Lancaster, 1986; Markey, Atherton, & Newton, 1982; Srinivasan, 1996). Richer thesauri have also been used to provide synonyms, generalizations, and specializations of users' search terms (see Srinivasan, 1992, for a review). Controlled vocabularies and thesaurus entries can be generated either manually or by the automatic analysis of large collections of texts.
    With the advent of large-scale collections of full text, statistical approaches are being used more and more to analyze the relationships among terms and documents. LSA takes this approach. LSA induces knowledge about the meanings of documents and words by analyzing large collections of texts. The approach simultaneously models the relationships among documents based an their constituent words, and the relationships between words based an their occurrence in documents. By using fewer dimensions for representation than there are unique words, LSA induces similarities among terms that are useful in solving the information retrieval problems described earlier. LSA is a fully automatic statistical approach to extracting relations among words by means of their contexts of use in documents, passages, or sentences. It makes no use of natural language processing techniques for analyzing morphological, syntactic, or semantic relations. Nor does it use humanly constructed resources like dictionaries, thesauri, lexical reference systems (e.g., WordNet), semantic networks, or other knowledge representations. Its only input is large amounts of texts. LSA is an unsupervised learning technique. It starts with a large collection of texts, builds a term-document matrix, and tries to uncover some similarity structures that are useful for information retrieval and related text-analysis problems. Several recent ARIST chapters have focused an text mining and discovery (Benoit, 2002; Solomon, 2002; Trybula, 2000). These chapters provide complementary coverage of the field of text analysis.
    Object
    Latent Semantic Indexing
  4. Siqueira, J.; Martins, D.L.: Workflow models for aggregating cultural heritage data on the web : a systematic literature review (2022) 0.06
    0.0631024 = product of:
      0.10517066 = sum of:
        0.023397226 = weight(_text_:retrieval in 464) [ClassicSimilarity], result of:
          0.023397226 = score(doc=464,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.16710453 = fieldWeight in 464, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=464)
        0.062516235 = weight(_text_:semantic in 464) [ClassicSimilarity], result of:
          0.062516235 = score(doc=464,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.32483283 = fieldWeight in 464, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=464)
        0.019257195 = product of:
          0.03851439 = sum of:
            0.03851439 = weight(_text_:web in 464) [ClassicSimilarity], result of:
              0.03851439 = score(doc=464,freq=4.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.25496176 = fieldWeight in 464, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=464)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    In recent years, different cultural institutions have made efforts to spread culture through the construction of a unique search interface that integrates their digital objects and facilitates data retrieval for lay users. However, integrating cultural data is not a trivial task; therefore, this work performs a systematic literature review on data aggregation workflows, in order to answer five questions: What are the projects? What are the planned steps? Which technologies are used? Are the steps performed manually, automatically, or semi-automatically? Which perform semantic search? The searches were carried out in three databases: Networked Digital Library of Theses and Dissertations, Scopus and Web of Science. In Q01, 12 projects were selected. In Q02, 9 stages were identified: Harvesting, Ingestion, Mapping, Indexing, Storing, Monitoring, Enriching, Displaying, and Publishing LOD. In Q03, 19 different technologies were found it. In Q04, we identified that most of the solutions are semi-automatic and, in Q05, that most of them perform a semantic search. The analysis of the workflows allowed us to identify that there is no consensus regarding the stages, their nomenclatures, and technologies, besides presenting superficial discussions. But it allowed to identify the main steps for the implementation of the aggregation of cultural data.
  5. Enser, P.G.B.: Visual image retrieval (2008) 0.05
    0.05001663 = product of:
      0.12504157 = sum of:
        0.07487112 = weight(_text_:retrieval in 3281) [ClassicSimilarity], result of:
          0.07487112 = score(doc=3281,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.5347345 = fieldWeight in 3281, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.125 = fieldNorm(doc=3281)
        0.05017045 = product of:
          0.1003409 = sum of:
            0.1003409 = weight(_text_:22 in 3281) [ClassicSimilarity], result of:
              0.1003409 = score(doc=3281,freq=2.0), product of:
                0.16209066 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04628742 = queryNorm
                0.61904186 = fieldWeight in 3281, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=3281)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Date
    22. 1.2012 13:01:26
  6. Belkin, N.J.; Croft, W.B.: Retrieval techniques (1987) 0.05
    0.05001663 = product of:
      0.12504157 = sum of:
        0.07487112 = weight(_text_:retrieval in 334) [ClassicSimilarity], result of:
          0.07487112 = score(doc=334,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.5347345 = fieldWeight in 334, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.125 = fieldNorm(doc=334)
        0.05017045 = product of:
          0.1003409 = sum of:
            0.1003409 = weight(_text_:22 in 334) [ClassicSimilarity], result of:
              0.1003409 = score(doc=334,freq=2.0), product of:
                0.16209066 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04628742 = queryNorm
                0.61904186 = fieldWeight in 334, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=334)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Annual review of information science and technology. 22(1987), S.109-145
  7. Smith, L.C.: Artificial intelligence and information retrieval (1987) 0.05
    0.05001663 = product of:
      0.12504157 = sum of:
        0.07487112 = weight(_text_:retrieval in 335) [ClassicSimilarity], result of:
          0.07487112 = score(doc=335,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.5347345 = fieldWeight in 335, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.125 = fieldNorm(doc=335)
        0.05017045 = product of:
          0.1003409 = sum of:
            0.1003409 = weight(_text_:22 in 335) [ClassicSimilarity], result of:
              0.1003409 = score(doc=335,freq=2.0), product of:
                0.16209066 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04628742 = queryNorm
                0.61904186 = fieldWeight in 335, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=335)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Annual review of information science and technology. 22(1987), S.41-77
  8. Hjoerland, B.: Semantics and knowledge organization (2007) 0.04
    0.04472341 = product of:
      0.11180852 = sum of:
        0.023397226 = weight(_text_:retrieval in 1980) [ClassicSimilarity], result of:
          0.023397226 = score(doc=1980,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.16710453 = fieldWeight in 1980, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1980)
        0.0884113 = weight(_text_:semantic in 1980) [ClassicSimilarity], result of:
          0.0884113 = score(doc=1980,freq=8.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.45938298 = fieldWeight in 1980, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1980)
      0.4 = coord(2/5)
    
    Abstract
    The aim of this chapter is to demonstrate that semantic issues underlie all research questions within Library and Information Science (LIS, or, as hereafter, IS) and, in particular, the subfield known as Knowledge Organization (KO). Further, it seeks to show that semantics is a field influenced by conflicting views and discusses why it is important to argue for the most fruitful one of these. Moreover, the chapter demonstrates that IS has not yet addressed semantic problems in systematic fashion and examines why the field is very fragmented and without a proper theoretical basis. The focus here is on broad interdisciplinary issues and the long-term perspective. The theoretical problems involving semantics and concepts are very complicated. Therefore, this chapter starts by considering tools developed in KO for information retrieval (IR) as basically semantic tools. In this way, it establishes a specific IS focus on the relation between KO and semantics. It is well known that thesauri consist of a selection of concepts supplemented with information about their semantic relations (such as generic relations or "associative relations"). Some words in thesauri are "preferred terms" (descriptors), whereas others are "lead-in terms." The descriptors represent concepts. The difference between "a word" and "a concept" is that different words may have the same meaning and similar words may have different meanings, whereas one concept expresses one meaning.
  9. Yang, K.: Information retrieval on the Web (2004) 0.03
    0.03240385 = product of:
      0.08100962 = sum of:
        0.03743556 = weight(_text_:retrieval in 4278) [ClassicSimilarity], result of:
          0.03743556 = score(doc=4278,freq=8.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.26736724 = fieldWeight in 4278, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=4278)
        0.043574058 = product of:
          0.087148115 = sum of:
            0.087148115 = weight(_text_:web in 4278) [ClassicSimilarity], result of:
              0.087148115 = score(doc=4278,freq=32.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.5769126 = fieldWeight in 4278, product of:
                  5.656854 = tf(freq=32.0), with freq of:
                    32.0 = termFreq=32.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4278)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    How do we find information an the Web? Although information on the Web is distributed and decentralized, the Web can be viewed as a single, virtual document collection. In that regard, the fundamental questions and approaches of traditional information retrieval (IR) research (e.g., term weighting, query expansion) are likely to be relevant in Web document retrieval. Findings from traditional IR research, however, may not always be applicable in a Web setting. The Web document collection - massive in size and diverse in content, format, purpose, and quality - challenges the validity of previous research findings that are based an relatively small and homogeneous test collections. Moreover, some traditional IR approaches, although applicable in theory, may be impossible or impractical to implement in a Web setting. For instance, the size, distribution, and dynamic nature of Web information make it extremely difficult to construct a complete and up-to-date data representation of the kind required for a model IR system. To further complicate matters, information seeking on the Web is diverse in character and unpredictable in nature. Web searchers come from all walks of life and are motivated by many kinds of information needs. The wide range of experience, knowledge, motivation, and purpose means that searchers can express diverse types of information needs in a wide variety of ways with differing criteria for satisfying those needs. Conventional evaluation measures, such as precision and recall, may no longer be appropriate for Web IR, where a representative test collection is all but impossible to construct. Finding information on the Web creates many new challenges for, and exacerbates some old problems in, IR research. At the same time, the Web is rich in new types of information not present in most IR test collections. Hyperlinks, usage statistics, document markup tags, and collections of topic hierarchies such as Yahoo! (http://www.yahoo.com) present an opportunity to leverage Web-specific document characteristics in novel ways that go beyond the term-based retrieval framework of traditional IR. Consequently, researchers in Web IR have reexamined the findings from traditional IR research.
  10. Rasmussen, E.M.: Indexing and retrieval for the Web (2002) 0.03
    0.031598836 = product of:
      0.07899709 = sum of:
        0.04333227 = weight(_text_:retrieval in 4285) [ClassicSimilarity], result of:
          0.04333227 = score(doc=4285,freq=14.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.30948192 = fieldWeight in 4285, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4285)
        0.035664823 = product of:
          0.071329646 = sum of:
            0.071329646 = weight(_text_:web in 4285) [ClassicSimilarity], result of:
              0.071329646 = score(doc=4285,freq=28.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.47219574 = fieldWeight in 4285, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4285)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The introduction and growth of the World Wide Web (WWW, or Web) have resulted in a profound change in the way individuals and organizations access information. In terms of volume, nature, and accessibility, the characteristics of electronic information are significantly different from those of even five or six years ago. Control of, and access to, this flood of information rely heavily an automated techniques for indexing and retrieval. According to Gudivada, Raghavan, Grosky, and Kasanagottu (1997, p. 58), "The ability to search and retrieve information from the Web efficiently and effectively is an enabling technology for realizing its full potential." Almost 93 percent of those surveyed consider the Web an "indispensable" Internet technology, second only to e-mail (Graphie, Visualization & Usability Center, 1998). Although there are other ways of locating information an the Web (browsing or following directory structures), 85 percent of users identify Web pages by means of a search engine (Graphie, Visualization & Usability Center, 1998). A more recent study conducted by the Stanford Institute for the Quantitative Study of Society confirms the finding that searching for information is second only to e-mail as an Internet activity (Nie & Ebring, 2000, online). In fact, Nie and Ebring conclude, "... the Internet today is a giant public library with a decidedly commercial tilt. The most widespread use of the Internet today is as an information search utility for products, travel, hobbies, and general information. Virtually all users interviewed responded that they engaged in one or more of these information gathering activities."
    Techniques for automated indexing and information retrieval (IR) have been developed, tested, and refined over the past 40 years, and are well documented (see, for example, Agosti & Smeaton, 1996; BaezaYates & Ribeiro-Neto, 1999a; Frakes & Baeza-Yates, 1992; Korfhage, 1997; Salton, 1989; Witten, Moffat, & Bell, 1999). With the introduction of the Web, and the capability to index and retrieve via search engines, these techniques have been extended to a new environment. They have been adopted, altered, and in some Gases extended to include new methods. "In short, search engines are indispensable for searching the Web, they employ a variety of relatively advanced IR techniques, and there are some peculiar aspects of search engines that make searching the Web different than more conventional information retrieval" (Gordon & Pathak, 1999, p. 145). The environment for information retrieval an the World Wide Web differs from that of "conventional" information retrieval in a number of fundamental ways. The collection is very large and changes continuously, with pages being added, deleted, and altered. Wide variability between the size, structure, focus, quality, and usefulness of documents makes Web documents much more heterogeneous than a typical electronic document collection. The wide variety of document types includes images, video, audio, and scripts, as well as many different document languages. Duplication of documents and sites is common. Documents are interconnected through networks of hyperlinks. Because of the size and dynamic nature of the Web, preprocessing all documents requires considerable resources and is often not feasible, certainly not an the frequent basis required to ensure currency. Query length is usually much shorter than in other environments-only a few words-and user behavior differs from that in other environments. These differences make the Web a novel environment for information retrieval (Baeza-Yates & Ribeiro-Neto, 1999b; Bharat & Henzinger, 1998; Huang, 2000).
  11. Hunter, J.: Collaborative semantic tagging and annotation systems (2009) 0.03
    0.028291617 = product of:
      0.14145808 = sum of:
        0.14145808 = weight(_text_:semantic in 7382) [ClassicSimilarity], result of:
          0.14145808 = score(doc=7382,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.73501277 = fieldWeight in 7382, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.125 = fieldNorm(doc=7382)
      0.2 = coord(1/5)
    
  12. Buckland, M.K.; Liu, Z.: History of information science (1995) 0.03
    0.025008315 = product of:
      0.06252079 = sum of:
        0.03743556 = weight(_text_:retrieval in 4226) [ClassicSimilarity], result of:
          0.03743556 = score(doc=4226,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.26736724 = fieldWeight in 4226, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=4226)
        0.025085226 = product of:
          0.05017045 = sum of:
            0.05017045 = weight(_text_:22 in 4226) [ClassicSimilarity], result of:
              0.05017045 = score(doc=4226,freq=2.0), product of:
                0.16209066 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04628742 = queryNorm
                0.30952093 = fieldWeight in 4226, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4226)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    State of the art review of the historical development of information science as deemed to be covered by the particular interests of memebers of the American Society for Information Science, as defined as the representation, storage, transmission, selection, retrieval, filtering, and use of documents and messages. Arranges the references cited roughly according to the classification scheme used by Information Science Abstracts, and so uses the headings: background; information science; techniques and technology; information related behaviour; application areas; social aspects; education for information science; institutions; individuals; geographical areas; and conclusions
    Date
    13. 6.1996 19:22:20
  13. Haas, S.W.: Natural language processing : toward large-scale, robust systems (1996) 0.03
    0.025008315 = product of:
      0.06252079 = sum of:
        0.03743556 = weight(_text_:retrieval in 7415) [ClassicSimilarity], result of:
          0.03743556 = score(doc=7415,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.26736724 = fieldWeight in 7415, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=7415)
        0.025085226 = product of:
          0.05017045 = sum of:
            0.05017045 = weight(_text_:22 in 7415) [ClassicSimilarity], result of:
              0.05017045 = score(doc=7415,freq=2.0), product of:
                0.16209066 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04628742 = queryNorm
                0.30952093 = fieldWeight in 7415, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7415)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    State of the art review of natural language processing updating an earlier review published in ARIST 22(1987). Discusses important developments that have allowed for significant advances in the field of natural language processing: materials and resources; knowledge based systems and statistical approaches; and a strong emphasis on evaluation. Reviews some natural language processing applications and common problems still awaiting solution. Considers closely related applications such as language generation and th egeneration phase of machine translation which face the same problems as natural language processing. Covers natural language methodologies for information retrieval only briefly
  14. Hjoerland, B.; Kyllesbech Nielsen, L.: Subject access points in electronic retrieval (2001) 0.02
    0.022694103 = product of:
      0.11347052 = sum of:
        0.11347052 = weight(_text_:retrieval in 3826) [ClassicSimilarity], result of:
          0.11347052 = score(doc=3826,freq=6.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.8104139 = fieldWeight in 3826, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.109375 = fieldNorm(doc=3826)
      0.2 = coord(1/5)
    
    Theme
    Klassifikationssysteme im Online-Retrieval
    Verbale Doksprachen im Online-Retrieval
  15. Julien, C.-A.; Leide, J.E.; Bouthillier, F.: Controlled user evaluations of information visualization interfaces for text retrieval : literature review and meta-analysis (2008) 0.02
    0.022418672 = product of:
      0.05604668 = sum of:
        0.03970641 = weight(_text_:retrieval in 1718) [ClassicSimilarity], result of:
          0.03970641 = score(doc=1718,freq=4.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.2835858 = fieldWeight in 1718, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1718)
        0.01634027 = product of:
          0.03268054 = sum of:
            0.03268054 = weight(_text_:web in 1718) [ClassicSimilarity], result of:
              0.03268054 = score(doc=1718,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.21634221 = fieldWeight in 1718, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1718)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This review describes experimental designs (users, search tasks, measures, etc.) used by 31 controlled user studies of information visualization (IV) tools for textual information retrieval (IR) and a meta-analysis of the reported statistical effects. Comparable experimental designs allow research designers to compare their results with other reports, and support the development of experimentally verified design guidelines concerning which IV techniques are better suited to which types of IR tasks. The studies generally use a within-subject design with 15 or more undergraduate students performing browsing to known-item tasks on sets of at least 1,000 full-text articles or Web pages on topics of general interest/news. Results of the meta-analysis (N = 8) showed no significant effects of the IV tool as compared with a text-only equivalent, but the set shows great variability suggesting an inadequate basis of comparison. Experimental design recommendations are provided which would support comparison of existing IV tools for IR usability testing.
  16. Campe, P.: Case, semantic roles, and grammatical relations : a comprehensive bibliography (1994) 0.02
    0.021218713 = product of:
      0.10609356 = sum of:
        0.10609356 = weight(_text_:semantic in 8663) [ClassicSimilarity], result of:
          0.10609356 = score(doc=8663,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.5512596 = fieldWeight in 8663, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.09375 = fieldNorm(doc=8663)
      0.2 = coord(1/5)
    
  17. Yu, N.: Readings & Web resources for faceted classification 0.02
    0.020474121 = product of:
      0.051185302 = sum of:
        0.028076671 = weight(_text_:retrieval in 4394) [ClassicSimilarity], result of:
          0.028076671 = score(doc=4394,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.20052543 = fieldWeight in 4394, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4394)
        0.023108633 = product of:
          0.046217266 = sum of:
            0.046217266 = weight(_text_:web in 4394) [ClassicSimilarity], result of:
              0.046217266 = score(doc=4394,freq=4.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.3059541 = fieldWeight in 4394, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4394)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The term "facet" has been used in various places, while in most cases it is just a buzz word to replace what is indeed "aspect" or "category". The references below either define and explain the original concept of facet or provide guidelines for building 'real' faceted search/browse. I was interested in faceted classification because it seems to be a natural and efficient way for organizing and browsing Web collections. However, to automatically generate facets and their isolates is extremely difficult since it involves concept extraction and concept grouping, both of which are difficult problems by themselves. And it is almost impossible to achieve mutually exclusive and jointly exhaustive 'true' facets without human judgment. Nowadays, faceted search/browse widely exists, implicitly or explicitly, on a majority of retail websites due to the multi-aspects nature of the data. However, it is still rarely seen on any digital library sites. (I could be wrong since I haven't kept myself updated with this field for a while.)
    Theme
    Klassifikationssysteme im Online-Retrieval
  18. Weiss, A.K.; Carstens, T.V.: ¬The year's work in cataloging, 1999 (2001) 0.02
    0.01956386 = product of:
      0.09781929 = sum of:
        0.09781929 = sum of:
          0.053920146 = weight(_text_:web in 6084) [ClassicSimilarity], result of:
            0.053920146 = score(doc=6084,freq=4.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.35694647 = fieldWeight in 6084, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0546875 = fieldNorm(doc=6084)
          0.043899145 = weight(_text_:22 in 6084) [ClassicSimilarity], result of:
            0.043899145 = score(doc=6084,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.2708308 = fieldWeight in 6084, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=6084)
      0.2 = coord(1/5)
    
    Abstract
    The challenge of cataloging Web sites and electronic resources was the most important issue facing the cataloging world in the last year. This article reviews attempts to analyze and revise the cataloging code in view of the new electronic environment. The difficulties of applying traditional library cataloging standards to Web resources has led some to favor metadata as the best means of providing access to these materials. The appropriate education and training for library cataloging personnel remains crucial during this transitional period. Articles on user understanding of Library of Congress subject headings and on cataloging practice are also reviewed.
    Date
    10. 9.2000 17:38:22
  19. Case, D.O.: Looking for information : a survey on research on information seeking, needs, and behavior (2002) 0.02
    0.01941514 = product of:
      0.04853785 = sum of:
        0.034386758 = weight(_text_:retrieval in 1270) [ClassicSimilarity], result of:
          0.034386758 = score(doc=1270,freq=12.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.24559249 = fieldWeight in 1270, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1270)
        0.014151092 = product of:
          0.028302183 = sum of:
            0.028302183 = weight(_text_:web in 1270) [ClassicSimilarity], result of:
              0.028302183 = score(doc=1270,freq=6.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.18735787 = fieldWeight in 1270, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1270)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Footnote
    Rez. in: JASIST 54(2003) no.7, S.695-697 (R. Savolainen): "Donald O. Case has written an ambitious book to create an overall picture of the major approaches to information needs and seeking (INS) studies. The aim to write an extensive review is reflected in the list of references containing about 700 items. The high ambitions are explained an p. 14, where Case states that he is aiming at a multidisciplinary understanding of the concept of information seeking. In the Preface, the author characterizes his book as an introduction to the topic for students at the graduate level, as well as as a review and handbook for scholars engagged in information behavior research. In my view, Looking for Information is particularly welcome as an academic textbook because the field of INS studies suffers from the lack of monographs. Along with the continuous growth of the number of journal articles and conference papers, there is a genuine need for a book that picks up the numerous pieces and puts them together. The use of the study as a textbook is facilitated by clearly delineated sections an major themes and the wealth of concrete examples of information seeking in everyday contexts. The book is lucidly written and it is accessible to novice readers, too. At first glance, the idea of providing a comprehensive review of INS studies may seem a mission impossible because the current number of articles, papers, and other contributions in this field is nearing the 10,000 range (p. 224). Donald Case is not alone in the task of coming to grips with an increasing number of studies; similar problems have been faced by those writing INS-related chapters for the Annual Review of Information Science and Technology (ARIST). Case has solved the problem of "too many publications to be reviewed" by concentrating an the INS literature published during the last two decades. Secondly, studies an library use and information retrieval are discussed only to a limited extent. In addition, Case is highly selective as to studies focusing an the use of specific sources and channels such as WWW. These delineations are reasonable, even though they beg some questions. First, how should one draw the line between studies an information seeking and information retrieval? Case does not discuss this question in greater detail, although in recent years, the overlapping areas of information seeking and retrieval studies have been broadened, along with the growing importance of WWW in information seeking/retrieval. Secondly, how can one define the concept of information searching (or, more specifically, Internet or Web searching) in relation to information seeking and information retrieval? In the field of Web searching studies, there is an increasing number of contributions that are of direct relevance to information-seeking studies. Clearly, the advent of the Internet, particularly, the Web, has blurred the previous lines between INS and IR literature, making them less clear cut. The book consists of five main sections, and comprises 13 chapters. There is an Appendix serving the needs of an INS textbook (questions for discussion and application). The structure of the book is meticulously planned and, as a whole, it offers a sufficiently balanced contribution to theoretical, methodological, and empirical issues of INS. The title, Looking for Information: A Survey of Research an Information Seeking, Needs, and Behavior aptly describes the main substance of the book. . . . It is easy to agree with Case about the significance of the problem of specialization and fragmentation. This problem seems to be concomitant with the broadening field of INS research. In itself, Case's book can be interpreted as a struggle against this fragmentation. His book suggests that this struggle is not hopeless and that it is still possible to draw an overall picture of the evolving research field. The major pieces of the puzzle were found and the book will provide a useful overview of INS studies for many years."
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  20. Chowdhury, G.G.: Natural language processing (2002) 0.02
    0.017766777 = product of:
      0.04441694 = sum of:
        0.028076671 = weight(_text_:retrieval in 4284) [ClassicSimilarity], result of:
          0.028076671 = score(doc=4284,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.20052543 = fieldWeight in 4284, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4284)
        0.01634027 = product of:
          0.03268054 = sum of:
            0.03268054 = weight(_text_:web in 4284) [ClassicSimilarity], result of:
              0.03268054 = score(doc=4284,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.21634221 = fieldWeight in 4284, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4284)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Natural Language Processing (NLP) is an area of research and application that explores how computers can be used to understand and manipulate natural language text or speech to do useful things. NLP researchers aim to gather knowledge an how human beings understand and use language so that appropriate tools and techniques can be developed to make computer systems understand and manipulate natural languages to perform desired tasks. The foundations of NLP lie in a number of disciplines, namely, computer and information sciences, linguistics, mathematics, electrical and electronic engineering, artificial intelligence and robotics, and psychology. Applications of NLP include a number of fields of study, such as machine translation, natural language text processing and summarization, user interfaces, multilingual and cross-language information retrieval (CLIR), speech recognition, artificial intelligence, and expert systems. One important application area that is relatively new and has not been covered in previous ARIST chapters an NLP relates to the proliferation of the World Wide Web and digital libraries.

Languages

  • e 93
  • d 2
  • m 2
  • pt 1
  • More… Less…

Types

  • a 85
  • b 17
  • m 6
  • el 4
  • r 1
  • s 1
  • More… Less…