Search (3 results, page 1 of 1)

  • × year_i:[2020 TO 2030}
  • × author_ss:"Gnoli, C."
  1. Binding, C.; Gnoli, C.; Tudhope, D.: Migrating a complex classification scheme to the semantic web : expressing the Integrative Levels Classification using SKOS RDF (2021) 0.03
    0.03270937 = product of:
      0.08177343 = sum of:
        0.062516235 = weight(_text_:semantic in 600) [ClassicSimilarity], result of:
          0.062516235 = score(doc=600,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.32483283 = fieldWeight in 600, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=600)
        0.019257195 = product of:
          0.03851439 = sum of:
            0.03851439 = weight(_text_:web in 600) [ClassicSimilarity], result of:
              0.03851439 = score(doc=600,freq=4.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.25496176 = fieldWeight in 600, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=600)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Theme
    Semantic Web
  2. Gnoli, C.: Faceted classifications as linked data : a logical analysis (2021) 0.01
    0.010609357 = product of:
      0.05304678 = sum of:
        0.05304678 = weight(_text_:semantic in 452) [ClassicSimilarity], result of:
          0.05304678 = score(doc=452,freq=2.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.2756298 = fieldWeight in 452, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=452)
      0.2 = coord(1/5)
    
    Abstract
    Faceted knowledge organization systems have sophisticated logical structures, making their representation as linked data a demanding task. The term facet is often used in ambiguous ways: while in thesauri facets only work as semantic categories, in classification schemes they also have syntactic functions. The need to convert the Integrative Levels Classification (ILC) into SKOS stimulated a more general analysis of the different kinds of syntactic facets, as can be represented in terms of RDF properties and their respective domain and range. A nomenclature is proposed, distinguishing between common facets, which can be appended to any class, that is, have an unrestricted domain; and special facets, which are exclusive to some class, that is, have a restricted domain. In both cases, foci can be taken from any other class (unrestricted range: free facets), or only from subclasses of an existing class (parallel facets), or be defined specifically for the present class (bound facets). Examples are given of such cases in ILC and in the Dewey Decimal Classification (DDC).
  3. Almeida, P. de; Gnoli, C.: Fiction in a phenomenon-based classification (2021) 0.01
    0.0056153345 = product of:
      0.028076671 = sum of:
        0.028076671 = weight(_text_:retrieval in 712) [ClassicSimilarity], result of:
          0.028076671 = score(doc=712,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.20052543 = fieldWeight in 712, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=712)
      0.2 = coord(1/5)
    
    Abstract
    In traditional classification, fictional works are indexed only by their form, genre, and language, while their subject content is believed to be irrelevant. However, recent research suggests that this may not be the best approach. We tested indexing of a small sample of selected fictional works by Integrative Levels Classification (ILC2), a freely faceted system based on phenomena instead of disciplines and considered the structure of the resulting classmarks. Issues in the process of subject analysis, such as selection of relevant vs. non-relevant themes and citation order of relevant ones, are identified and discussed. Some phenomena that are covered in scholarly literature can also be identified as relevant themes in fictional literature and expressed in classmarks. This can allow for hybrid search and retrieval systems covering both fiction and nonfiction, which will result in better leveraging of the knowledge contained in fictional works.